NIST 的前身国家标准局 (NBS) 于 20 世纪 50 年代中期开始工作,以满足新兴半导体行业的测量需求。虽然这项工作最初侧重于其他政府机构的晶体管应用,但在 20 世纪 60 年代初,该局向美国材料与试验协会 (ASTM) 和美国电子工业协会 (EIA) 寻求行业指导。ASTM 的首要任务是准确测量硅电阻率。NBS 科学家开发了一种实用的非破坏性方法,其精度比以前的破坏性方法高出十倍。该方法是五种工业标准和广泛用于校准行业测量仪器的电阻率标准参考材料的基础。第二个项目由 EIA 专家小组推荐,旨在解决晶体管的“二次击穿”故障机制。该项目的成果得到了广泛应用,包括解决导致航天飞机发射延迟的主发动机控制问题。
历史回顾 NIST 的前身是美国国家标准局 (NBS),该局于 20 世纪 50 年代中期开始工作,以满足新兴半导体行业的测量需求。虽然这项工作最初侧重于其他政府机构的晶体管应用,但在 20 世纪 60 年代初,该局向美国材料与试验协会 (ASTM) 和美国电子工业协会 (EIA) 寻求行业指导。ASTM 的首要任务是准确测量硅的电阻率。NBS 的科学家开发了一种实用的无损测量方法,其精度比以前的破坏性方法高出 10 倍。该方法是五项工业标准和广泛用于校准行业测量仪器的电阻率标准参考材料的基础。由 EIA 专家小组推荐的第二个项目解决了晶体管的“二次击穿”故障机理。该项目成果得到了广泛应用,包括解决导致航天飞机发射延迟的主发动机控制问题。
电介质击穿 (DB) 控制着微电子设备的故障,并且日益影响着其功能。标准成像技术基于物理结构产生对比度,难以将这一电子过程可视化。本文,我们报告了 Pt/HfO 2 /Ti 价态变化存储设备中 DB 的原位扫描透射电子显微镜 (STEM) 电子束感应电流 (EBIC) 成像。STEM EBIC 成像直接将 DB 的电子特征可视化,即电导率和电场的局部变化,具有高空间分辨率和良好的对比度。我们看到 DB 通过两个串联的不同结构进行:由电子注入产生的挥发性“软”丝;以及由氧空位聚集产生的非挥发性“硬”丝。该图在“软”和“硬”DB 之间进行了物理区分,同时适应了“渐进式”DB,其中硬丝和软丝的相对长度可以连续变化。
随着后段制程 (BEOL) 互连尺寸的不断减小,RC 延迟已成为导致整体性能下降的主要原因 [1-2]。为了降低互连的电阻率和电容,人们采用了各种策略,例如优化制造工艺 [3-4]、修改导线的几何形状 [2] 以及利用低 k 电介质等新材料 [5-6]。然而,这些修改虽然可以通过芯片缩小尺寸来提高性能,但往往会以牺牲可靠性为代价 [7-9]。因此,对互连可靠性的广泛研究提供了有价值的评估和建议,以便在较长的使用寿命内保持性能。考虑到金属可靠性,由电子风驱动的电迁移 (EM) [10-11] 和由应力梯度驱动的应力诱导空洞 (SIV) [12] 研究了扩散主导的故障机制。对于电介质,由于金属间距最小化和介电性能较弱而产生的高电场使时间相关电介质击穿 (TDDB) 在最近的研究中也很重要 [13]。
NIST 的前身国家标准局 (NBS) 于 20 世纪 50 年代中期开始致力于满足新兴半导体行业的测量需求。虽然这项工作最初侧重于其他政府机构的晶体管应用,但在 20 世纪 60 年代初,该局向美国材料与试验协会 (ASTM) 和美国电子工业协会 (EIA) 寻求行业指导。ASTM 的首要任务是准确测量硅的电阻率。NBS 的科学家开发了一种实用的无损测量方法,其精度比以前的破坏性方法高出 10 倍。该方法是五种工业标准和广泛用于校准行业测量仪器的电阻率标准参考材料的基础。第二个项目由 EIA 专家小组推荐,旨在解决晶体管的“二次击穿”故障机理。该项目的成果得到了广泛应用,包括解决导致航天飞机发射延迟的主发动机控制问题。
摘要 — 评估了 1 µm 间距晶圆对晶圆 (W2W) Cu/SiCN 混合键合界面的电气可靠性。使用控制 IV 方法获取 W2W 混合堆栈的击穿电压分布。假设幂律模型,对使用条件外推可确认使用寿命超过 10 年,当温度低于 175 ◦ C 时,幂律指数高于 10。发现沿 Cu/SiCN 混合键合界面的传导机制为 Poole-Frenkel 发射,能量势垒等于 0.95 eV。仅在温度高于 200 ◦ C 和场高于 1.5 MV/cm 时才能观察到移动铜,证实了该键合界面对铜漂移具有良好的稳定性。索引术语 — 晶圆对晶圆 (W2W) 键合、可靠性、电介质击穿、混合焊盘泄漏。
在 30 种经过分类的双极、BiCMOS 和 CMOS 插座式 CDM 产品中,有 27 种产品的耐压为 ≥ 500V,且未出现实际 CDM 故障。在耐压 <500V 的三种产品中,有两种在经过分析和重新设计之前,因制造原因而多次出现 CDM 故障。对这两种产品的分析表明,插座式和非插座式 CDM 测试均在实际 CDM 故障中发现的相同故障位置复制了初始电介质击穿故障机制。然而,插座式 CDM 测试始终比非插座式 CDM 测试造成更严重的损坏。在一种产品上,这导致了与插座式 CDM 和实际故障完全不同的故障模式。基于这项工作,提出了一种结合插座式和非插座式 CDM 测试的方法来分类/评估新产品并推动 CDM 稳健性的改进。
能源效率是社会以及能源转变的最重要挑战之一。能量转换在电气和电网中都起着关键作用,并且RE搜索集中在开发材料上,以提高这些关键过程中的效率和减轻能量损失。出于上述目的,氧化β-Gallium(β-GA 2 O 3)已成为追求更有效的电力转换系统和电力驱动技术的关键参与者。尽管其相对较低的导热率相对较低,但氧化甘高的带有令人印象深刻的宽带隙(〜4.8 eV),高击穿场(8 mV/cm),Excel借出的电气性能以及潜在的较低的制造成本(与SIC和GAN相比),使其适合于高功率和高电量应用。这些独特的属性使电力电子设备的设计能够以良好的效率,降低的损失和提高的性能设计。基于氧化危的设备有可能革新各种技术领域,包括电动汽车,新型能源系统和电网。
为了制备高击穿电压薄膜,对高击穿电压材料有许多要求,[5,12]例如,介电常数要尽可能大,介电材料在硅衬底上必须是热力学稳定的。[6,8,13]目前对击穿强度的研究工作都是在PECVD/LPCVD上进行的,[10,14]但本实验采用ICP-CVD模型制备氮化硅薄膜,可以提供更多的能量,促进反应气体的分解,制备出击穿强度更大的薄膜。氮化硅薄膜中的氢含量对薄膜的击穿强度影响很大。[15]在薄膜的成分中,Si-H键在薄膜的组成中起着基础性的作用,随着薄膜中氢含量的变化,薄膜的电学性质将发生变化。 [6,16,17]当薄膜中氢含量较高时,硅的悬挂键会被H填充,会增加薄膜的稳定性,提高击穿强度。[18]但关于H含量与薄膜击穿电压的关系,在ICP-CVD机上进行的实验很少,结论也不完善,因此本实验采用ICP-CVD机进行薄膜沉积。[19,20]
摘要 — 循环平面正交场放大器 (RPCFA) 由密歇根大学设计、制造和测试。RPCFA 由多个射频源驱动,频率范围为 2.40 至 3.05 GHz,功率为 1 至 800 kW。脉冲电压由带陶瓷绝缘体的密歇根电子长束加速器 (MELBA-C) 输送到阴极,该加速器配置为提供 −300 kV、1-10 kA 的脉冲,脉冲长度为 0.3-1.0- μs。RPCFA 表现出零驱动稳定性和 15% 的带宽。在设计频率为 3 GHz、功率低于 150 kW 的情况下,微波信号的放大率观察到平均增益为 7.87 dB,变化性较高,σ = 2.74 dB。过滤该数据集以仅包含具有相同电压和电流分布的镜头,可获得 6.6 ± 1.6 dB 的增益。当注入的微波功率超过 150 kW 时,平均增益增加到 8.71 dB,变化性降低到 σ = 0.63 dB。峰值输出功率接近 6 MW,RF 击穿限制了设备的最大输出功率。