摘要 - 网络犯罪活动的迅速上升以及受其威胁越来越多的设备将软件安全问题引起了人们的关注。由于所有攻击中约有90%利用已知类型的安全问题,因此寻找脆弱的综合和应用现有的缓解技术是与网络犯罪作斗争的可行实际方法。在本文中,我们研究了最新的机器学习技术(包括流行的深度学习算法)如何在预测JavaScript程序中可能具有安全性漏洞的功能方面执行。我们应用了8个机器学习算法来构建从节点安全项目和SNYK平台的公共数据库中为本研究构建的新数据集构建预测模型,并从GitHub中构建了代码修复补丁。我们使用静态源代码指标作为预测变量和广泛的网格搜索算法来找到最佳的性能模型。我们还研究了各种重新采样策略的影响,以处理数据集的不平衡性质。最佳性能算法是KNN,该算法为预测弱势函数的模型以0.76(0.91 Precision和0.66召回)的预测模型。此外,深度学习,基于树木和森林的分类器和SVM具有竞争力,其F-MEASERIORS超过0.70。尽管F-测量结果与重新采样策略没有很大差异,但精度和召回的分布确实发生了变化。似乎没有重新采样似乎会产生偏爱高精度的模型,而重新采样策略可以平衡IR措施。索引术语 - 泄气性,JavaScript,机器学习,深度学习,代码指标,数据集
T-Cell Types and Functions ................................................................................................................................... 6 T-Cell Signaling Cascades ...................................................................................................................................... 7
本文描述了研究结果,说明了确定结温过高的方法和选择用于测量功率 MOS 晶体管热阻过程中的近似测温特性函数对测量结果的影响。研究涉及使用间接电学方法进行的测量。介绍了三种确定晶体管结温过高的方法,分别使用近似测温特性的线性函数和非线性函数。比较了使用每种方法获得的热阻测量结果。还分析了因选择所考虑的方法而导致的测量误差。
2020; Jin等。,2020b; Ayoub等。,2020年; Kakade等。,2020年; Du等。,2021)。特别是,对于有限的状态空间,神经功能近似值取得了显着的成功(Mnih等人。,2015年; Berner等。,2019年; Arulkumaran等。,2019年),而线性函数近似器理论上变得更好地理解(Yang和Wang,2020; Jin等人。,2020b; Ayoub等。,2020年; Kakade等。,2020年; Du等。,2021)。相比之下,尽管在实践中普遍存在,但在部分观察到的马尔可夫决策过程中的强化学习(POMDPS)较少地研究(Cassandra等人,1996; Hauskrecht和Fraser,2000年; Brown and Sandholm,2018年; Ra i Qerty等。,2011年)。更具体地,部分可观察性构成了统计和计算。从统计的角度来看,由于缺乏马尔可夫财产,预测未来的奖励,观察或国家是一项挑战。尤其是,预测未来通常涉及推断国家的分布(也称为信仰状态)或其功能作为历史的摘要,即使假设(observation)发射和(状态)过渡内核也已知(Vlassis etal。 ,2012年; Golowich等。 ,2022)。 同时,学习发射和过渡内核面临因果推理通常遇到的各种问题(Zhang and Bareinboim,2016年)。 ,2021)。 ,2020a)。,2012年; Golowich等。,2022)。同时,学习发射和过渡内核面临因果推理通常遇到的各种问题(Zhang and Bareinboim,2016年)。,2021)。,2020a)。例如,它们通常是不可实现的(Kallus等人。即使假设它们是能够识别的,它们的估计可能需要一个样本量,该样本量在地平线和维度上成倍缩小(Jin等人。即使在评估政策方面,这种统计挑战也已经令人难以置信(Nair和Jiang,2021; Kallus等人。,2021; Bennett和Kallus,2021),构成了政策优化的基础。从计算角度来看,众所周知,策略优化通常是棘手的(Vlassis et al。,2012年; Golowich等。,2022)。此外,有限的观察和状态空间扩大了统计和计算挑战。另一方面,大多数现有结果仅限于表格设置(Azizzadenesheli等人。,2016年; Guo等。,2016年; Jin等。,2020a; Xiong等。,2021),其中观察和状态空间是有限的。在本文中,我们研究了POMDP中的线性函数近似,以解决有限观察和状态空间所扩增的实力挑战。尤其是我们的贡献是四倍。首先,我们定义了具有线性结构的一类POMDP,并确定了针对样品良好的增强学习的不良调节措施。这样的不良调节措施对应于表格设置中的重复(Jin等人,2020a)。第二,我们提出了一种增强学习算法(OP-TENET),该算法适用于任何POMDP承认上述线性结构。此外,我们在操作装置中使用最小值优化公式,以便即使数据集较大,也可以在计算功能庄园中实现算法。第三,从理论上讲,我们证明了Op -Tenet在o(1 /ǫ2)情节中达到了最佳政策。尤其是样品复杂性在线性结构的固有维度上缩放,并且是观测和状态空间大小的独立性。第四,我们的算法和分析基于新工具。 特别是,op-tenet的样本效率是由se- 启用的第四,我们的算法和分析基于新工具。特别是,op-tenet的样本效率是由se-
摘要:针对使用规范(或经典的)鉴别损失函数(例如原始GAN(Vanillagan)系统中的一个),引入了统一的α-聚化发生器损耗函数,该双目标生成对抗网络(GAN)。发电机损耗函数基于对称类概率估计类型函数Lα,所得的GAN系统称为Lα -GAN。在最佳歧视器下,表明发电机的优化问题包括最大程度地减少Jensen-fα-差异,这是Jensen-Shannon Divergence的自然概括,其中Fα是以损失函数Lα表示的coNVEX函数。还证明,该Lα -GAN问题在特殊情况下恢复了文献中的许多GAN问题,包括Vanillagan,最小二乘GAN(LSGAN),最小值k thorder gan(L k gan)和最近引入的(αd,αd,αd,αd,αd,αd,αd,αd = 1。最后,为三个数据集(MNAIST,CIFAR -10和堆叠MNIST)提供了实验结果,以说明Lα -GAN系统的各种示例的性能。
开发了铁电纤锌矿氮化铝钪 (Al 1 − x Sc x N) 固溶体的 Landau – Devonshire 热力学能量密度函数。该函数使用现有的实验和理论数据进行参数化,能够准确再现块体和薄膜的成分相关铁电特性,例如自发极化、介电常数和压电常数。发现纤锌矿结构保持铁电性的最大 Sc 浓度为 61 at. %。对 Al 1 − x Sc x N 薄膜的详细分析表明,铁电相变和特性对基底应变不敏感。这项研究为新型铁电纤锌矿固溶体的定量建模奠定了基础。
在每个预期的应用中填充锂离子电池的使用寿命需要进一步了解细胞的寿命和可靠性。源自文献,控制锂离子电池电池的外部压力常数是延长周期寿命的必然因素。因此,必须对细胞的应变和理解外部压力对阻抗的影响进行积极知识,以评估改善细胞性能的最佳压力。这项工作列出了电压,应变和阻抗之间的相关性,这是富含镍的镍 - 山 - 山果果(NMC)锂离子袋细胞上施加的恒定外部压力的函数。使用高精度通用测试机显示,压力范围内的细胞最大笔划的变化可忽略不计0至1000 kPa。此外,通过分析以不同的恒定外部压力测得的一系列电化学阻抗光谱数据来揭示100至300 kPa之间的最佳压力。在此压力范围内电荷传递电阻以及不同的过程表现出最佳。
我们所说的可计算的实体对函数是什么意思:朝着自然定义。按“可计算”一词的含义,一个可计算的价值函数𝑓(𝑥1,。。。,𝑥实值输入的,𝑥)是一个函数,可以根据输入来计算其值。 此类功能用于处理数据𝑥1,。 。 。 ,𝑥𝑘。 该数据处理的目标是估计与数量𝑥1,。 。 。 ,thy公式𝑦=𝑓(𝑥1,。) 。 。 ,𝑥)。 例如,我们希望根据当前值𝑥1,。 。 。 ,在此和附近的不同气象量的不同。 但是,在理想的世界中,数据是相应物理量的实际值。 我们学习值的方式是通过测量:通过直接测量或处理适当的辅助测量结果。 因此,重要的是要考虑到测量量永远不会绝对准确,它们始终具有一定的准确性 - 通常由相应二进制表示中的数字数𝑚描述,以便准确性为2 -𝑚。 换句话说,而不是知道实际值𝑎1,。 。 。 ,相应数量的𝑎,我们只知道测量结果𝑥1,。 。 。 。 。 。 。,𝑥)是一个函数,可以根据输入来计算其值。此类功能用于处理数据𝑥1,。。。,𝑥𝑘。该数据处理的目标是估计与数量𝑥1,。。。,thy公式𝑦=𝑓(𝑥1,。。。,𝑥)。例如,我们希望根据当前值𝑥1,。。。,在此和附近的不同气象量的不同。但是,在理想的世界中,数据是相应物理量的实际值。我们学习值的方式是通过测量:通过直接测量或处理适当的辅助测量结果。因此,重要的是要考虑到测量量永远不会绝对准确,它们始终具有一定的准确性 - 通常由相应二进制表示中的数字数𝑚描述,以便准确性为2 -𝑚。换句话说,而不是知道实际值𝑎1,。。。,相应数量的𝑎,我们只知道测量结果𝑥1,。。。。。。。,the the是2 −𝑚- close到这些值,即| 𝑥 -𝑎 -𝑎|从1到𝑘≤2−𝑚。由于已知值𝑥𝑖仅是对实际值𝑎𝑎的近似值,因此结果𝑓(𝑥1,。,数据处理的,仅是所需理想值𝑓的近似值(𝑎1,。 ,𝑎)。 我们要确保结果𝑦=𝑓(𝑥1,。 。 。 ,数据处理的,接近所需的(理想)值𝑏=𝑓(𝑎1,。 。 。 ,𝑎),我们需要知道估计值的准确性是什么,即,与所需的值𝑏:如果我们不知道这种准确性,即,即,如果差异𝑦 -𝑏可以任意大,那么估计是没有用的,那么估计是无用的,因为它不会对任何限制施加任何限制。 实际上,我们希望以一些给定的精度进行估计。 例如,对于温度,精度为几个度。 可能是,我们知道的现有准确性不足以达到所需的精度 - 当传感器不太准确时,就会发生这种情况。 在这种情况下,要以所需的精度获取值𝑏,我们需要执行更准确的测量 - 我们,仅是所需理想值𝑓的近似值(𝑎1,。,𝑎)。我们要确保结果𝑦=𝑓(𝑥1,。。。,数据处理的,接近所需的(理想)值𝑏=𝑓(𝑎1,。 。 。 ,𝑎),我们需要知道估计值的准确性是什么,即,与所需的值𝑏:如果我们不知道这种准确性,即,即,如果差异𝑦 -𝑏可以任意大,那么估计是没有用的,那么估计是无用的,因为它不会对任何限制施加任何限制。 实际上,我们希望以一些给定的精度进行估计。 例如,对于温度,精度为几个度。 可能是,我们知道的现有准确性不足以达到所需的精度 - 当传感器不太准确时,就会发生这种情况。 在这种情况下,要以所需的精度获取值𝑏,我们需要执行更准确的测量 - 我们,接近所需的(理想)值𝑏=𝑓(𝑎1,。。。,𝑎),我们需要知道估计值的准确性是什么,即,与所需的值𝑏:如果我们不知道这种准确性,即,即,如果差异𝑦 -𝑏可以任意大,那么估计是没有用的,那么估计是无用的,因为它不会对任何限制施加任何限制。实际上,我们希望以一些给定的精度进行估计。例如,对于温度,精度为几个度。可能是,我们知道的现有准确性不足以达到所需的精度 - 当传感器不太准确时,就会发生这种情况。在这种情况下,要以所需的精度获取值𝑏,我们需要执行更准确的测量 - 我们
摘要。非线视线(NLOS)成像已成为一种突出的技术,用于从经历多种弥漫性反射的图像中重建遮盖的对象。这种成像方法由于其广泛的潜在应用而引起了各种领域的关注,包括遥感,救援操作和智能驾驶。然而,准确地对入射光方向进行建模,该方向携带能量并由检测器捕获,并在随机扩散反射方向中捕获,这构成了巨大的挑战。这一挑战阻碍了NLOS成像的精确前进和逆物理模型的获取,这对于实现高质量重建至关重要。在这项研究中,我们提出了一个使用随机角度跟踪的NLOS成像系统的点扩散函数(PSF)模型。此外,我们引入了一种重构方法,称为物理受限的反向网络(PCIN),该方法通过利用PSF约束和卷积神经网络的优化来建立准确的PSF模型和逆物理模型。PCIN方法在正向PSF模型的约束下随机初始化参数,从而消除了传统深入学习方法需要的广泛训练数据集的需求。通过交替的迭代和梯度下降算法,我们迭代优化了PSF模型和神经网络参数中的分散反射角。结果表明,PCIN不需要大量实际的地面数据组来实现有效的数据利用。此外,实验发现证实了所提出的方法可以高精度有效地恢复隐藏的对象特征。