摘要 本文提出了一种基于各层神经元值统计分布概率的分段线性 (PWL) S 型函数逼近方法,仅使用加法电路即可提高网络识别精度。首先将 S 型函数划分为三个固定区域,然后根据神经元值分布概率将每个区域中的曲线分割为子区域,以减少逼近误差并提高识别精度。在Xilinx 的FPGA-XC7A200T上对MNIST和CIFAR-10数据集进行的实验表明,所提方法在DNN、CNN和CIFAR-10上分别达到了97.45%、98.42%和72.22%的识别准确率,比其他仅使用加法电路的近似方法分别提高了0.84%、0.57%和2.01%。关键词:S形函数、概率、神经网络、分段线性近似
使用包含时空自由度的正交基,我们开发了用于量子光学的 Wigner 函数理论,作为 Moyal 形式主义的扩展。由于时空正交基涵盖所有量子光学状态的完整希尔伯特空间,因此它不需要分解为离散希尔伯特空间的张量积。与此类空间相关的 Wigner 函数成为函数,运算由函数积分(星积的函数版本)表示。由此产生的形式主义使时空自由度和粒子数自由度都相关的场景的计算变得易于处理。为了演示该方法,我们为一些众所周知的状态和算子计算了 Wigner 函数的示例。
修道院. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 死亡. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 艾滋病2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 anova.negbin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 区域 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 细菌 . . . ... ... . . . . . . . . . . . . . . . . 14 beav1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 beav2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... ................. ... 。 。 。 。 。 。 。 。 。 。 。 。 。 22 凯斯. 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 23 汽车93 . 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 24只猫。 。 。 。 。 。 。 。 。 。 。 。 ................. ... 。 。 。 。 27 con2tr。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 27 限制-质量。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 28 对比 sdif 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 28 鸡笼。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 29 对应 . 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 30 冠状病毒抢劫。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 31 冠状病毒特罗布。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。. ... . ... . ... . ... . ... . ... 33 中央处理器 . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... 34 螃蟹 . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... 35 库欣综合征 . ... . ... . ... . ... . ... . ... . ... . ... . ... ... 37 列举。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 38 剂量.p。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 39名司机。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................................................................................................................................................................................................................................................................................................................................................. 43 eqscplot .................................................................................................................................................................................................................................................................................................................................................................................................................. 44 农场 .................................................................................................................................................................................................................................................................................................................................................................................................................................................. 44 农场 .................................................................................................................................................................................................................................................................................................................................................................................................................................................. 。 45 英尺。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 46 配合分配器。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 47
老龄化社会的需求提出了在日常情况下机器人支持人类的希望。对于这些辅助机器人,与用户自然通信的功能能力至关重要。但是,当前对话系统中使用的最先进技术远远不令人满意。对于使用这些技术的机器人选择适当的动作,例如朝橱柜移动或在听到命令“带给我杯子”时,这不是一件容易的事。房屋内部可以有许多候选杯子,并且需要将其移交给用户的特定杯子根据情况而不同。例如,它可能与准备一顿饭菜或被清除的一顿饭有关。出于实际原因,服务机器人采用的大多数对话管理机构是言语(用户的话语)和非语言(例如,视觉,运动和背景)的信息。使用这些机制,当机器人处理发音时,情况和以前的经历都没有考虑到,因此它可能会执行用户没有想象的动议。在这项研究中,当机器人由于识别误差而执行不良运动时,我们将“运动失败”定义为发生的。这项研究的目的是减少失败的风险。专注于语言理解与运动之间的关系,我们不处理成功识别用户命令的情况,但执行的运动最终导致了不良的结论。考虑一个机器人成功识别命令“选择对象”的情况,但是机器人在尝试捡起时未能掌握指定的对象。
扩展系统(晶体和无序系统)并可用于理解化学键合;表征电极化、磁化和拓扑;并作为最佳基组,在倒易空间或实空间中提供精确插值。本综述总结了当前基于 Wannier 函数的技术、材料特性和模拟代码的概况,这些技术、材料特性和模拟代码已向研究界开放,现已很好地集成到所谓的 Wannier 函数软件生态系统中。首先,介绍 Wannier 函数的理论和实用性,从它们广泛的适用领域开始,适用于使用最大局部化以外的替代方法的高级最小化方法。然后定义了 Wannier 生态系统的概念及其与许多量子模拟引擎和后处理包的交互和互操作性。本评论重点介绍了这种生态系统所赋予的一些关键特性和功能(从带插值和大规模模拟到电子传输、浆果学、拓扑、电子-声子耦合、动态平均场理论、嵌入和 Koopmans 函数),最后总结了互操作性和自动化的现状。本评论旨在强调代码背后的基本理论和概念,同时提及更深入的参考文献。它还阐明了代码之间的关系和联系,以及在相关情况下,其开发策略背后的不同动机和目标。最后,展望了未来的发展,并对整个软件生态系统的生物多样性和可持续性目标发表了评论。
DDS-3X25任意波形发生器具有1路任意波形输出,12位输出,同步信号输出,1路计数器/频率测量输入,6位输入和外部触发输入。用户可以通过鼠标任意编辑波形,也可以选择正弦波、方波、三角波、锯齿波、TTL、白噪声、高斯噪声、梯形波、指数波、AM、FM等常规波形。幅度、频率、偏移等参数也可设置。DDS-3X25的数据格式与泰克完全兼容,可以直接读取泰克示波器或泰克波形编辑软件生成的波形数据文件并重新显示波形。DDS-3X25采用DDS技术,具有频率精度高、波形分辨率高、可靠性高、软件支持范围广等优点。可广泛应用于各类电子实验室,并提供完善的二次开发接口,可轻松插入其他自动测量系统。
3。退出菜单模式,按遥控器上的相应组件键(TV,VCR·DVD或SAT•CBL•DTC)。菜单的特殊说明使用1。在RCA,GE和Proscan TV的菜单模式下,按菜单键选择突出显示的项目。数字密钥也可用于选择菜单选择。2。对于索尼组件,在菜单模式中按Enter键返回到上一个菜单。如果您的电视,VCR,DVD,卫星接收器,有线电视盒或数字电视转换器在尝试了品牌的所有代码后,或者未列出品牌,请尝试通过代码搜索输入方法搜索您的代码。要通过代码搜索输入方法对遥控器进行编程,请执行以下步骤:
可验证延迟函数 (VDF) 是一种加密原语,设计用于在规定的时间 t 内进行计算,而不管可用的并行计算能力如何,同时在计算完成后仍然易于验证。VDF 用于各种应用,例如随机数生成和区块链共识算法,其中需要延迟以确保某些操作不会执行得太快。关于 VDF 的开创性论文“可验证延迟函数”于 2018 年由 Boneh、Bonneau、Bünz 和 Fisch 发表 [ 9 ]。在论文中,作者介绍了 VDF 的概念,并描述了它在拍卖协议、工作量证明系统和安全多方计算等各种应用中的潜在用途。第一个有效的 VDF 是由 Pietrzak [ 42 ] 和 Wesolowski [ 50 ] 提出的;这两个 VDF 都基于未知顺序群的幂运算。我们参考 [ 10 ] 对这些 VDF 进行了概述。在寻找一种同时具有量子抗性的 VDF 这一未解决的问题的驱动下,De Feo、Masson、Petit 和 Sanso [ 25 ] 使用超奇异同源链作为“顺序慢速”函数来构建他们的 VDF。然而,考虑到双线性配对的使用,这种基于同源的 VDF 不具有量子抗性,而只提供一些量子烦恼。证明同源性的知识
部分子分布和碎裂函数是分析大多数高能数据的核心 [1,2]。在光前沿,由于时间膨胀和渐近自由,强子由冻结的部分子组成 [3 – 5]。因此,量子色动力学 (QCD) 中的硬过程可以分解为可微扰计算的硬块乘以非微扰矩阵元素,例如部分子分布函数 (PDF) 和碎裂函数 (FF)。PDF 在光前沿被估值,并且本质上是非微扰的,这使得它们无法用标准欧几里得格子公式来计算,除了几个最低矩之外。这个缺点可以通过使用准分布 [6] 及其变体 [7,8] 来避免。这些提议现在已被许多 QCD 格子合作所采用 [9 – 14]。我们最近展示了如何将这些概念扩展到量子计算 [15] 。夸克碎裂的概念起源于菲尔德和费曼的原创工作,他们提出了夸克喷流模型来描述半包容过程中介子的产生 [16] 。该模型本质上是一个独立的部分子级联模型,其中硬部分子通过发射连续的
岩体分类系统用于对岩石进行分类,并已用于工程项目和稳定性调查。它侧重于岩体参数和工程应用,包括隧道、斜坡、地基等。岩体分类在样本采集和观测困难的地区很有价值。随着技术的进步,过去几年,各种基于机器的模型算法(即 ANN 和 MLR)已用于岩体分类。在目前的研究中,讨论了岩体分类,即岩石荷载、站立时间、RQD、RMR、Q、GSI、SMR 和 RMi 及其应用。考虑到所有参数,得出结论,对于岩石状况较差的斜坡稳定性,与 RMR 相比,GSI 的适用性足够。GSI 还提供了高度准确的地质力学特性评估,使其成为工程师和地质学家的宝贵工具。此外,与 MLR 和传统方法相比,从 ANN 模型获得的 RMR 值可为隧道提供更好的结果。世界上 5 个不同地点的板岩、页岩、石英片岩、片麻岩和钙质片岩的 ARMR 分类分别为 51-54、66-70、57-60、35、65-70。板岩和页岩的范围被发现具有中等各向异性,而石英片岩、片麻岩和钙质片岩的范围被发现具有轻微各向异性和高度各向异性。