这是我想进一步探索的一些概念的集合,我将看到他们带我去哪里。,这可能太冗长了,因为我会想到这个问题。如果您准时短暂,请随时跳过结束,因为那是我认为我对OP要求的答案的答案。我的重点是将分化和集成为符号操作。为了差异化,让我们考虑一个包括常数(可能是复杂的),$ x $的功能符号的$ e $ e $,并且在算术操作和组成下被关闭。我们可以添加更多功能符号,例如$ e^x $,$ \ ln(x)$或$ x^{ - 1} $,但我们假设我们知道如何为添加到$ e $的每个添加的衍生物找到它们的衍生物。仅使用常数和$ x $,我们将多项式作为设置$ e $。更大的选项将是基本功能。如果差异化被视为$ e $中符号内的操作,则根据定义,它的算法是算法,因为我们可以根据$ e $中任何功能 - 符号的衍生物,因为其涵盖了生成$ e $的操作的属性。挑战可能来自确定功能是否属于$ e $。我声称,至少集成与差异化(可能更难)一样困难,这对于多项式来说是显而易见的,但取决于所选的集合$ e $。现在,让我们考虑构建一个适合集成的域,类似于我们处理分化的方式。让我们称此功能符号$ i $的收集。它包含常数和$ x $,其中可能还有其他符号,例如$ e^x $或$ x^{ - 1} $,我们知道它们的积分。这是一个简单的事情。我们假设$ i $在某些操作下关闭:其元素的线性组合以及操作$ \ oplus $(乘以衍生物)和$ \ otimes $(特定的组成操作)。这为我们提供了一个合理的最小域来定义内部集成。在这样的$ i $中,集成成为使用这些操作编写的功能的算法。我声称,在这种情况下,如果我们假设$ i $包含常数,并且满足了三个条件之一,那么推导很简单,从而允许仅使用一个基本操作计算衍生物。可以将OP的问题转化为是否给定的$ E $,我们有一种算法来检查其元素是否是$ i $的一部分,还是使用其积分和某些操作已知的函数 - 符号。此功能取决于$ e $的性质及其可用功能符号。对于$ x $中的多项式,这种算法显然存在。我们不仅有一些情况,即某些$ e $的问题是不可确定的。感谢Richardson的定理,如果$ e $包含$ \ ln(2),\ pi,e^x,e^x,\ sin(x)$,并且还包括$ | x | $以及$ e $中没有原始功能的功能,则条件3可用于$ e $ $ e $的基本功能,以及$ | x | $ | x | $。要验证这种情况,我们可以使用$ e^{x^2} $。定理的有效性源于基本函数$ m(n,x)$的存在,每个自然数$ n $都与0或1相同,但是对于每个自然数$ n $,无论它是相同的0还是1。如果我们通过为每个原始添加符号来关闭$ e $,则此范围消失。给定这样的函数,如果我们可以在$ e $中确定集成,那么对于每个自然数$ n $,无论$ f_n(x):= e^{x^2} m(n,x)$是否可以集成。但是,这将使我们能够弄清楚$ m(n,x)$是0或1何时,因为$ f_n(x)$是可以集成的,当$ m(n,x)= 0 $而不是$ m(n,x)= 1 $时。因此,对于某些类$ e $,我们看到虽然派生是基本的(显示该功能属于$ e $),但集成是不可决定的。这已经表明集成比派生更难(依赖我们集成的函数类别的语句)。观察:上述$ e $集成的不确定性与在$ e $中具有函数符号无关,而没有原始函数 - 符号为$ e $。另一方面,这使得$ e $不是由有限的许多符号生成的,从而使确定何时用$ e $中的符号表示函数更为复杂。因此,对于这个大$ e $的原因,如果我们赋予了我们知道的功能,则可以计算其积分,因为我们假设输入为$ e $。问题仍然存在:$ e $可以比派生更难集成?
摘要 尽管对能源创新和经济增长的研究仍在进行中,但人们对能源创新程度如何影响一个国家的收入不平等知之甚少。为了填补这一研究空白,我们开发了一个双变量模型来分析能源创新的分配如何影响一个国家的收入分配。利用费雪理想指数,我们计算了能源效率作为能源创新的指标。分位数对分位数回归已用于捕捉 N11 国家不同收入分位数对能源创新的影响。结果表明,在 N11 组成员国之间,能源创新可能产生不同的结果,即 a) 公平和积极的影响,(b) 负面影响,和 (c) 收入分配方面的不公平影响。我们推断出重要的政策含义,这可能会导致 N11 国家制定可持续发展战略。 35 这项研究是首批建立能源创新与一个国家不同分位数的收入不平等之间直接联系的研究之一。此外,我们成功地展示了高级分位数方法在推断可持续发展目标 (SDG) 重点政策影响中的应用。 39 40 关键词:能源创新;能源效率;收入不平等;可持续发展目标;分位数回归 42 43 44 1 通讯作者
分数演算在机器学习和生物医学工程中的应用是一个新颖且快速增长的研究领域。分数演算(FC)与机器学习(ML)和生物医学工程(BME)的交集是一个新兴领域,有望彻底改变我们在数据分析,信号处理,生物医学系统建模和控制方面解决问题的方式。该特刊旨在将FC应用于ML和BME领域的领域中的尖端研究和发展,包括但不限于以下内容:FC的理论进步及其对ML和BME的含义;开发对机器学习和重新学习的范围的分数算法的开发;包括Neural Intervers in Neural Intervers in Neural Interials fr Fr Fring; FRIF;和图像分析;使用分数阶微分方程对生物系统进行建模;生物医学设备和机器人技术中的分数控制系统;分数演算在生理建模和生物信息信息学中的应用;在FC与ML和BME集成中的挑战和未来方向。
量子算法已经发展成为高效解决线性代数任务的算法。然而,它们通常需要深度电路,因此需要通用容错量子计算机。在这项工作中,我们提出了适用于有噪声的中型量子设备的线性代数任务变分算法。我们表明,线性方程组和矩阵向量乘法的解可以转化为构造的汉密尔顿量的基态。基于变分量子算法,我们引入了汉密尔顿量变形和自适应分析,以高效地找到基态,并展示了解决方案的验证。我们的算法特别适用于具有稀疏矩阵的线性代数问题,并在机器学习和优化问题中有着广泛的应用。矩阵乘法算法也可用于汉密尔顿量模拟和开放系统模拟。我们通过求解线性方程组的数值模拟来评估算法的成本和有效性。我们在 IBM 量子云设备上实现了该算法,解决方案保真度高达 99.95%。2021 中国科学出版社。由 Elsevier BV 和中国科学出版社出版。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
错误率 p ad = 1 − e − tg /T 1 和 p pd = 1 − e − 2 tg /T ϕ 取决于门时间 tg、量子比特弛豫时间 T 1 和失相时间 T ϕ = 2 T 1 T 2 / (2 T 1 − T 2 ),其中 T 2 是量子比特相干时间。由于 tg 取决于正在执行的门,因此该噪声模型假设每个门的错误率都不同。为便于分析,我们假设单量子比特门错误率 p ad, 1 q = p pd, 1 q ≡ p 1 = 10 − 4 和双量子比特错误率 p ad, 2 q = p pd, 2 q = p 2 = 10 − 2 。这些值与当前硬件的值非常接近。在这里,我们将研究一个由两个噪声量子比特组成的系统。