抽象栽培的甲壳类肉(CCM)是一种直接从干细胞中创建高价值的虾,龙虾和螃蟹产品的手段,从而消除了养殖或捕捞活动物的需求。传统的甲壳类企业在管理过度捕捞,污染和变暖气候方面面临的压力增加,因此CCM可以提供一种方法,以确保随着全球对这些产品的需求的增长,CCM可以提供足够的供应。为了支持CCM的发展,本评论简要详细介绍了迄今为止的甲壳类细胞培养工作,然后再解决目前对甲壳类肌肉发育的了解,尤其是所涉及的分子机制,以及这可能与最近在脊椎动物物种中耕种肉类生产的作品有关。认识到目前缺乏可用于建立CCM培养物的细胞系,我们还考虑了可以非属于非属于的原发性干细胞来源,包括易于释放和重新生成的四肢组织,以及在循环血淋巴中推定的干细胞。分子方法诱导了肌源性分化和推定干细胞的永生化。最后,我们评估了CCM研究人员,尤其是抗体的工具的当前状态,并提出了解决现有短缺的途径,以查看现场的进展。
Error 500 (Server Error)!!1500.That’s an error.There was an error. Please try again later.That’s all we know.
随着全球糖尿病患病率的上升,胰岛素治疗和口服降糖药等传统治疗方法往往无法达到最佳血糖控制,从而导致严重的并发症。最近的研究集中于通过 a 细胞的转分化来补充胰腺 b 细胞,这提供了一种有希望的治疗途径。本综述探讨了 a 细胞到 b 细胞转分化的分子机制,强调了关键转录因子,例如 Dnmt1、Arx、Pdx1、MafA 和 Nkx6.1,并讨论了潜在的临床应用,特别是在以严重 b 细胞功能障碍为特征的 1 型和 2 型糖尿病中。其中还包括转分化效率低、细胞稳定性和安全性问题等挑战。未来的研究方向包括优化分子途径、提高转分化效率和确保 b 细胞身份的长期稳定性。总体而言,将 a 细胞转化为 b 细胞的能力代表了糖尿病治疗的一种变革性策略,为严重 b 细胞丢失的患者提供了更有效和可持续的治疗希望。
摘要古老的茶厂是珍贵的自然资源和茶叶遗传多样性的来源,对于研究植物的进化机制,多样化和驯化而具有巨大的价值。古老的茶叶植物之间的总体遗传多样性以及自然选择期间发生的遗传变化仍然很少理解。在这里,我们报告了由120个古代茶厂组成的八个不同群体的基因组重新陈述:来自吉州省的六组和云南省的两个团体。基于8,082,370个鉴定的高质量SNP,我们构建了系统发育关系,评估了种群结构并进行了全基因组关联研究(GWAS)。我们的系统发育分析表明,120个古老的茶厂主要聚集在三组和五个单个分支中,这与主成分分析(PCA)的结果一致。基于遗传结构分析,将古老的茶水进一步分为七个亚群。此外,发现古老的茶叶植物的变化不会因外部自然环境或人工育种的压力而降低(非同义/同义词= 1.05)。通过整合GWA,选择信号和基因功能预测,四个候选基因与三个叶片性状显着相关,并且两个候选基因与植物类型显着相关。这些候选基因可用于进一步的功能表征和茶植物的遗传改善。
Contenido: Assays for monitoring autophagy in stem cells -- Autophagy in Stem Cell Maintenance and Differentiation -- Autophagy in Embryonic stem cells and Neural stem cells -- Autophagy in Germline Stem Cells -- The role of autophagy in the regulation of hematopoietic stem cells -- Autophagy in Muscle Stem Cells -- Autophagy in Intestinal Stem Cells -- The autophagy lysosomal pathway: friend or成人神经干细胞中的敌人?- 间充质干细胞的自噬 - 基于干细胞的疗法 - 干细胞的自噬对照分化为骨骼疾病的成骨谱系 - 癌症转移的自噬。
间充质干细胞(MSC)具有自我更新能力,表现出多种分化的能力,并展示了关键特征,例如分泌作用,病变位点迁移和免疫调节潜力,使它们具有强大的神经退行性疾病疗法的候选者。许多研究表明,可以有效刺激MSC以区别于神经元。在直接将原始,未分化的MSC移植到神经退行性疾病的动物模型中的研究中已经观察到了积极的结果,但证据表明,通过组织工程技术诱导神经元差异的预处理可以显着增强其治疗作用。各种策略,例如化学物质,生长因子,与神经细胞共培养,基因转染和miRNA,可以诱导MSC的神经分化。其中,源自化学物质的小分子特别有效,因为它们有效,迅速诱导了MSC的神经分化,单独或组合。本综述旨在分析使用小痣来促进MSC分化为神经细胞的进步,从而对基于MSC的临床神经退行性疾病的疗法提供了对其潜在应用的见解。
在过去的十年中,干细胞分化和修复组织的显着能力吸引了大幅关注。这些细胞已被证明具有多能分化的显着潜力,在精确定义的条件和特定的环境提示下,具有分化为成骨,脂肪生成,软骨和肌生成细胞谱系的能力(1)。尽管在整个身体的几个组织中已经鉴定出间质干细胞(MSC),包括脂肪组织,肌肉和牙髓,但骨髓仍然是这些细胞的主要储层(2)。因此,源自骨髓的MSC被广泛认为是研究和表征MSC的基准。关于MSC的实验室研究显着有助于理解这些细胞,从而为研究人员提供了宝贵的见解和知识(3,4)。今天,研究人员采用定义明确的培养条件和生长因素来指导MSC分化为特定的细胞谱系。这可以利用MSC用于再生医学和组织工程中的各种应用(5,6)。脂肪形成是一个严格控制的过程,其中间充质干细胞将分化为成熟和功能性脂肪细胞(7)。在最佳条件下,这些间充质细胞表现出不同的形态特征,并表达与脂肪细胞成熟相关的特定基因。必须考虑到分化过程是一种多阶段和协调的现象,涉及间充质干细胞,前脂肪细胞和成熟的脂肪细胞作为关键参与者(8)。有效的细胞内和细胞外微环境的有效细胞通信对于脂肪形成必须是必不可少的(9)。生长因子,分子信号和转录因子介导这种复杂的通信。此过程中涉及的转录因子之一是过氧化物酶体增殖物激活的受体伽马(PPARγ)。pPARγ属于配体激活的转录因子家族,在基因表达的调节中起着重要作用(10)。先前的研究已经证明,PPARγ基因对于将间充质干细胞区分为完全成熟的脂肪细胞至关重要(11)。它被认为是此过程中的一个基本因素。PPARγ包括两个同工型,两种同工型都在脂肪细胞中表达。对与该转录因子相关的调节区域的分析表明,它参与了参与脂肪生成的许多基因的转录调控(12,13)。衍生自骨髓的间充质干细胞
用于量子计算的极化立方体板置量非常适合用于捕获的离子,线性光学和中性原子量子计算和量子加密应用。这些梁插座可在跨紫外线到NIR光谱的一系列常用,特定的波长中获得,并提供> 99.5%的S偏置光的反射,P极高的光的传输> 96%。具有紧凑的12.7毫米立方体结构,可以轻松地集成到台式应用程序或OEM设备中。用于量子计算的极化立方体板块具有熔融二氧化硅底物,具有低温敏感性,并在设计波长下进行AR涂层以最大程度地传输,以确保使用低光信号的最佳性能。这些梁插座具有精度直角棱镜,以确保λ/6表面平坦度和20-10的表面质量。
利益冲突Philipp Karschnia-从Ludwig-Maximilians-University慕尼黑的“研究与教学支持计划”(Föfole)授予了“ LMU医学研究与科学学会”(Wifomed)(Wifomed)的“弗里德里希·贝尔·贝尔(Friedrich-Baur) - 贝尔·贝尔(Friedrich-Baur-Baur-Roundation)和“ Familie mehdontation”。Emilie le Rhun -Elr获得了Abbvie,Adastra,Daiichi Sankyo,Leo Pharma,Seagen和Tocagen的讲座或顾问委员会的酬金。Michael Vogelbaum- Infuseon Therapeutics的间接股权和患者特许权使用权益。来自Celgene和Cellinta的Honararia。从Celgene和Oncosynergy获得的研究赠款。Martin van den bent- Celgene,BMS,Agios,Boehringer,Abbvie,Abbvie,Bayer,Carthera,Nerviano和Genenta的顾问。Stefan J. Grau - 未报告披露。Matthias Preusser – MP has received honoraria for lectures, consultation or advisory board participation from the following for-profit companies: Bayer, Bristol- Myers Squibb, Novartis, Gerson Lehrman Group (GLG), CMC Contrast, GlaxoSmithKline, Mundipharma, Roche, BMJ Journals, MedMedia, Astra Zeneca, AbbVie,礼来(Lilly),梅达德(Medahead),戴伊(Daiichi Sankyo),赛诺菲(Sanofi),默克·夏普(Merck Sharp&Dome),托卡根(Tocagen),阿法斯特拉(Adastra)。以下营利性公司支持MP向其机构支付的临床试验和合同研究:Böhringer-Ingelheim,Bristol-Myers Squibb,Roche,Daiichi Sankyo,Daiichi Sankyo,Merck Sharp&Dome,Novocure,Novocure,GlaxoSmithkline,Abbvie。Riccardo Soffietti-未报告披露。Louisa von Baumgarten - 尚无报告。 Manfred Westphal - 未报告披露。Louisa von Baumgarten - 尚无报告。Manfred Westphal - 未报告披露。Michael Weller-来自Abbvie,Adastra,Merck,Sharp&Dohme(MSD),默克(EMD),Novocure,Piqur和Roche的研究赠款。荣誉仪式或咨询委员会的参与或咨询咨询,来自Abbvie,Adastra,Basilea,Bristol Meyer Squibb(BMS),Celgene,Merck,Sharp&Dohme(MSD),Merck(EMD),Novocure,Orbus,Roche,Roche,Tocagen和Ymabs和Ymabs和Ymabs和Ymabs和Ymabs。Joerg -Christian Tonn- Brainlab和Carthera的顾问/发言人Honoraria,以及Springer Publisher Intl的特许权使用费。
光动力疗法,射频诱导的高温等。)。11,它们的超小型尺寸降低至100 nm,并且它们的高表面反应性可以与生物学环境产生显着的相互作用,可以评估它们调节细胞行为的能力或诸如细胞差异和繁殖等细胞方面的能力。12,13上面列出的不同细胞机制的控制既可以改善用于生物医学应用的创新纳米复合材料的制造,又可以促进对治疗方案的改进策略的使用,以恢复因创伤性疾病,退化性疾病或衰变而损害的组织功能。14迄今为止,已经研究了基于聚合物,金属和陶瓷的几种NP。因此,大多数研究使用包括诱导多能干细胞(IPSC)在内的多种干细胞进行。15 - 18,例如,用柠檬酸盐,壳聚糖或bronectin官能化的Au-NP能够增强人间质干细胞(MSC)和脂肪衍生的干细胞(ADSC)的差异化,并进入心肌细胞和Oste-Obte-Ormasts。19,20 AG-NP可以促进人尿液衍生的干细胞(USC)和MSC的增殖,而基于石墨烯的NPS则增强了