干细胞在发育和再生医学领域得到广泛应用,具有治疗多种以前被认为无法治愈的疾病和损伤的潜力。与身体中的大多数其他细胞类型不同,干细胞具有分化成各种专门细胞类型的独特能力,使其成为组织修复、器官再生甚至治疗复杂发育障碍的有力工具。根据其来源和分化潜力,干细胞可分为两大类:胚胎干细胞 (ESC) 和成体干细胞 (ASC)。ESC 具有多能性;它们可以分化成身体中的几乎任何类型的细胞。这些细胞来自胚泡(早期胚胎)的内细胞团。另一方面,成体干细胞具有多能性,它们可以产生有限数量的细胞类型,通常与它们起源的组织或器官有关。成体干细胞存在于各种组织中,包括骨髓、脂肪组织和大脑。
间充质干细胞(MSC)起源于胚胎的中胚层,并具有分化成各种组织的能力,例如体外和体内。这些干细胞具有在恢复和再生医学中应用的重要潜力,尤其是在修复心脏,肝脏和皮肤损伤方面。在骨科中,MSC可以促进断裂愈合,但仍未完全理解该机制。最近的研究表明,MSC对
人类诱导性多能干细胞 (iPSC) 在再生医学和疾病建模方面具有巨大的意义和潜力。这些细胞来源于成人体细胞,如皮肤或血细胞,可以重新编程以恢复到多能状态,从而使它们能够分化成人体中的任何细胞类型 ( Mahajani 等人,2019 年)。研究人员可以将 CRISPR 基因编辑技术与患者来源的 iPSC 结合使用,以研究各种遗传疾病的潜在机制,从而开发个性化治疗方法。随着全球实验室不断改进生成、模式化和利用 iPSC 的技术,它们对医学和生物技术的影响将呈指数级增长,为解决众多健康挑战提供新途径。
图3。干细胞分解和成熟到器官及其基因表达分析。(a)分离的细胞的代表性照片嵌入了胶状基质中,它们形成球体并以囊性,环形形态分化成肺类器官。嵌入式培养物被传递。(b)分化肺器官的基因表达分析表明,气道上皮细胞谱系富集,包括基础(TP63),纤毛(FOXJ1),分泌(SCGB3A2),Goblet(SPDEF)(SPDEF)和肺神经内分泌细胞(ASCL1)。nt:未测试。(c)分化肺类器官的基因表达分析表明肺泡上皮细胞谱系(SOX9),包括肺泡II型(ABCA3,SFTPB)和I型I型(Hopx)细胞。
长期以来,科学家一直对利用干细胞的能力很感兴趣。干细胞是一种未分化的、自我复制的细胞,能够在生物体内分化成分化细胞。多能干细胞,包括胚胎干细胞,能够分化成生物体内的任何细胞。科学家认为,更多地了解干细胞将使他们能够开发出各种疾病的治疗方法和潜在治疗方法。然而,许多人反对将胚胎用于科学目的。2001 年,美国总统乔治·W·布什签署了一项行政命令,限制联邦政府资助从人类胚胎中获得的干细胞研究;2009 年,美国总统巴拉克·奥巴马推翻了这项禁令。阅读时,记下关于干细胞研究的不同观点。
大多数动物,包括人类,都是由不同的器官和组织组成的,这些器官和组织由发挥特定作用的特化细胞组成。当组织退化或受损时,受影响的细胞必须被替换,以便组织能够继续发挥其作用。这种再生潜力的存在要归功于每个组织中的干细胞群,这些干细胞可以分裂产生更多的干细胞——维持一个恒定的干细胞池用于修复——或者分化成特化细胞来替代受损细胞。干细胞的分裂和分化需要保持平衡:如果太多的干细胞分化,干细胞池可能会耗尽,但如果干细胞分裂不受控制,这可能会导致癌症。然而,这种平衡往往会随着年龄的增长,或由于环境或遗传原因而失效。再生医学的目标之一是在实验室中生产可用于
摘要 — 干细胞是未分化细胞,能够自我复制并分化成各种特殊细胞类型,在医学上具有巨大潜力。这些细胞被归类为胚胎干细胞或成体干细胞,其能力各不相同,从全能(形成所有细胞类型)到多能(产生特殊类别)。干细胞具有多种医学应用,包括治疗糖尿病、艾滋病毒、多发性硬化症和促进伤口愈合。它们是再生医学、抗衰老治疗和器官工程的核心。此外,干细胞有助于了解遗传疾病和测试新药,减少对动物模型的依赖。然而,免疫排斥、大规模分化困难和细胞生长不受控制的风险等挑战仍然存在。干细胞可以从骨髓、外周血和脐带等来源获取,而 CRISPR 和诱导多能干细胞 (iPSC) 等新兴技术增强了它们的治疗潜力。尽管面临挑战,但正在进行的研究仍在继续推进它们在治疗慢性疾病、遗传疾病和损伤方面的应用。索引术语 - 干细胞、细胞分化、未分化细胞、医学应用、干细胞疗法
细胞和基因疗法 (CGT) 正在改变生物制药公司治疗和治愈某些疾病的方式。从病毒载体到 CAR-T 细胞,CGT 的格局正在我们眼前迅速演变。一种结合多种 CGT 的方法是使用体细胞衍生细胞来产生多能人类干细胞,这些干细胞可以重新分化为终末细胞类型,以治疗和研究疾病。在过去十年中,在利用诱导多能干细胞 (hiPSC) 建模特定器官和微环境细胞系统方面取得了重大进展,包括心脏、肺、肝脏、胰腺和中枢神经系统 (CNS) 1 等(图 1)。通过使用转录因子或小分子,人类多能细胞已经分化成在形态、转录和功能上与其原代细胞非常相似的状态。这使得能够对处于成熟度和疾病各个阶段的细胞系统进行建模(图 1)。事实上,自 2006 年发现该技术以来,实现所需细胞类型多样性和特异性的能力已得到显著提高 2 。结合最近人们对 CGT 兴趣的激增,使用 iPSC 技术进行治疗干预的潜力非常光明。
干细胞通过分化为其他类型的细胞的潜力来分类。胚胎干细胞是最有效的,因为它们必须成为体内的每种细胞。完整的分类包括:Totiptent-区分所有可能的单元格类型的能力。的例子是在卵受精时形成的合子,也是由合子分裂产生的前几个细胞。多能 - 分化为几乎所有细胞类型的能力(除了滋养细胞除外)。示例包括胚胎干细胞和细胞,这些细胞来自中胚层,内胚层和外胚层细菌层,这些细胞是在胚胎干细胞分化的开始阶段形成的。多功能 - 分化成紧密相关的细胞家族的能力。例子包括造血(成人)干细胞,这些干细胞可能成为红色和白细胞或血小板。[寡头 - 分化为几个细胞的能力。例子包括(成人)淋巴样或髓样干细胞。]一能力 - 仅产生自己类型的细胞的能力,但具有自我更新的特性,必须标记为干细胞。例子包括(成人)神经元干细胞。