摘要 本项目旨在设计和构建一个太阳能监测系统,该系统利用 Arduino 板技术来实现其目标。本研究评估了许多参数,包括热导率、光强度、电压电导率和电流电导率等。温度传感器用于监测房间的温度。光强度是借助光敏电阻 (LDR) 传感器测量的。因此,我们使用分压器来测量电压,因为太阳能电池板产生的电压对于 Arduino 来说太高,Arduino 在本实验中充当接收器。为了完成它,我们使用了一个能够检测太阳能电池阵列产生的电流的电流传感器模块来读取电流。Arduino 被赋予这些设置作为输入值,结果显示在计算机的液晶显示器 (LCD) 屏幕上。在 LCD 显示屏上,温度、光强度、电压和电流量都实时显示。为了在 LCD 屏幕上显示结果,Arduino 必须将参数的模拟输入转换为数字输出,然后再转换为模拟。该项目还将采用一种设计,以确保设备外壳便携且易于移动等。关键词:太阳能光伏、测量系统、光强度、温度、压力、电压、电流
输入频率应用于阈值检测器输入(引脚 11)。如本数据表的 V/F 电路部分所述,引脚 11 的阈值约为 (V DD + V SS ) /2 ± 400mV。引脚 11 的输入电压范围从 V DD 延伸到阈值以下约 2.5 V。如果引脚 11 上的电压低于阈值 2.5 伏以上,V/F 模式启动比较器将打开并破坏输出电压。阈值检测器输入具有约 200 mV 的滞后。在 ± 5 V 应用中,TC9400 的输入电压电平最低为 ± 400mV。如果测量的频率源是单极的,例如使用 +5V 电源的 TTL 或 CMOS,则应使用交流耦合电平转换器。图 6a 中显示了一个这样的电路。图 6b 中的电平转换器电路可用于单电源 F/V 应用。电阻分压器确保输入阈值跟踪电源电压。二极管钳位可防止输入在负方向上走得太远以打开启动比较器。二极管的正向电压每 ° C 下降 2.1 mV,因此对于高环境温度操作,建议串联两个二极管。
摘要 — 我们提出了一种新型紧凑型宽带波导 T 结功率分配器,特别适用于毫米波和太赫兹频率。它将基于基板的元件整合到波导结构中,以提供输出端口的隔离和匹配。内部端口引入在基板上形成为 E 探针的 T 结的顶点。这有助于将反射能量从输出端口有效地耦合到与 E 探针集成在同一基板上并通过薄膜技术制造的新型薄膜电阻终端。设计、模拟和制造了适用于 150-220 GHz 频带的功率分配器,以实验验证理论和模拟性能。结果表明,模拟和测量结果具有极好的一致性,对于三端口设备,输入和输出端口的回波损耗显著为 20 dB,输出端口之间的隔离度优于 17 dB。此外,测量的插入损耗小于 0.3 dB,幅度和相位不平衡分别为 0.15 dB 和 0°。此外,分压器对内置吸收负载的电阻材料的尺寸和薄层电阻具有出色的耐受性,使该设备成为毫米波和太赫兹系统(特别是射电天文接收器)非常实用的组件。
8 交流电路关系. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 8.1 简介 175 8.2 矢量 176 8.3 交流电路测量和值 178 8.4 交流电路中的电阻器 181 8.5 交流电路中的电感器 183 8.5.1 连接到交流电的电感器 184 8.5.2 电感器中的交流电流 185 8.5.3 相互串联的电感器 187 8.5.4 相互并联的电感器 190 8.6 交流电路中的电容器 192 8.6.1 连接到交流电的电容器 194 8.6.2 包含电容器的交流电路中的电流 196 8.6.3 串联电容器 197 8.6.4 并联电容器 199 8.7 电感器和电容器 200 8.8 相位差 204 8.8.1 超前和滞后 204 8.8.2 交流电路中电压和电流之间的相位差 206 8.8.3 使用矢量显示相位差 207 8.9 交流功率 208 8.9.1 阻抗 208 8.9.2 交流功率 208 8.9.3 功率因数 210 8.10 串联 RLC 电路 211 8.10.1 串联 RLC 电路中的功率因数 214 8.11 并联 RLC 电路 218 8.11.1 并联 RLC 电路中的功率因数 221 8.12 交流电路中的分压器 222
模块 — I(12 小时) MOS 场效应晶体管:FET 和 MOSFET 的原理和操作;P 沟道和 N 沟道 MOSFET;互补 MOS;E- MOSFET 和 DMOSFET 的 VI 特性;MOSFET 作为放大器和开关。BJT 的偏置:负载线(交流和直流);工作点;固定偏置和自偏置、带电压反馈的直流偏置;偏置稳定;示例。FET 和 MOSFET 的偏置:固定偏置配置和自偏置配置、分压器偏置和设计模块 — II(12 小时)BJT 的小信号分析:小信号等效电路模型;CE、CC、CB 放大器的小信号分析。Rs 和 RL 对 CE 放大器操作的影响、射极跟随器;级联放大器、达林顿连接和电流镜电路。 FET 的小信号分析:小信号等效电路模型、CS、CD、CG 放大器的小信号分析。CS 放大器上的 RsiG 和 RL 的匹配;源极跟随器和级联系统。模块 —III(8 小时)FET 和 BJT 的高频响应:BM 和 FET 的高频等效模型和频率响应;CS 放大器的频率响应、CE 放大器的频率响应。模块 —IV(6 小时)反馈放大器和振荡器:负反馈和正反馈的概念;四种基本反馈拓扑、实用反馈电路、正弦振荡器原理、WeinBridge、相移和晶体振荡器电路、功率放大器(A、B、AB、C 类)。模块 — V(7 小时)运算放大器:理想运算放大器、差分放大器、运算放大器参数、非反相配置、开环和闭环增益、微分器和积分器、仪表放大器。书籍:
每个机场均配备机场照明系统 (AFL) 作为飞机着陆、起飞和滑行的视觉辅助,以确保航班安全运行。AFL 之一是精密进近航道指示器 (PAPI),其功能是引导飞行员提供正确的着陆角度信号以便在跑道上着陆。PAPI由4个盒子组成,分别是盒子A,B,C,D,每个盒子有2个PAPI灯,这样加起来就有8个PAPI灯。特别是在阿迪苏玛莫苏拉卡尔塔国际机场,PAPI和恒流调节器之间的距离非常远,并且没有对PAPI的直接监控和控制。一旦发生 PAPI 损坏,技术人员将首先从塔台收到信息,并且处理会延迟,这可能会影响飞行安全。针对发现的问题,作者提出了解决方案,即使用可编程逻辑控制器 (PLC) CP1E N30SDR-A 和人机界面 (HMI) 作为显示监视器,创建 PAPI 监控系统。使用的方法是使用电压分压器电压传感器连接到PAPI和SRF05超声波传感器来检测飞机的高度,然后转发给Arduino,之后PLC将从Arduino接收数据并转发给HMI 作为监视器显示。该工具可以在超声波传感器、电压读数和HMI监控方面发挥良好的作用。该工具的电压传感器测试结果是,框A的误差为3.92%,框B的误差为1.28%,框C的误差为4.7%,框D的误差为2.09%。关键词:AFL、Arduino、CCR、HMI、监控、PAPI、控制器、PLC、跑道、传感器