几十年来,已经使用了各种类型的各种类型的共形涂层,高可靠性电子系统和裸露的电子系统。但是,保护先进的电子产品比以往任何时候都更具挑战性。电子设备越来越多地在户外使用,并将其广泛合并到商业电子设备中,例如车辆和无处不在的通信基站。保形涂层的要求在当代系统中的俯仰和间距方面的要求也越来越大。这样的系统包括当今的高频设备;随着设备组件的近距离比以前更接近,因此出现了新的和日益增长的挑战,用于保形涂层。现有类型的保形涂层已被证明有时不符合室外使用的更严格的要求,其中可能包括高水分,极端温度,盐或腐蚀性工业气体载气条件。面临这些极端条件的电子产品的扩散需要一种新型的无压力保形涂层,具有较高的水分和腐蚀性气体阻滞能力,以提供保护并确保可靠性。
Francesca Briganti,1,2,3,4,15 Han Sun,3,15 Wu Wei,5 Jingyan Wu,3 Chenchen Zhu,3 Martin Liss,6 Martin Liss,6 Ioannis Karakikes,7 Shannon Rego,3 Shannon Rego,3 Andrea Cipriano,8 Andrea Cipriano,8 Michael Snyder,3 Benjamin Meder,5 Genjamin Meder,5 gules Meder,5,9 xu xu xu xu xu xu,xu n. xu n. xu xu,x.9。 Gotthardt,6,12,13 Mark Mercola,4 *和Lars M. Steinmetz 1,3,4,5,14,16, * 1欧洲分子生物学实验室(EMBL),基因组生物学单位,海德堡,德国海德堡2美国加利福尼亚州斯坦福大学的斯坦福大学4心血管研究所和医学系,斯坦福大学,美国加利福尼亚州斯坦福大学,美国5斯坦福大学基因组技术中心,斯坦福大学,斯坦福大学,加利福尼亚州帕洛阿尔托,美国6 Neuromuscular and Cardiovascular and Cardiovascular Cell Bimogology,Max delbr€uck ucker for Cardior for Cardiquar for Cardiquar and Cardior for Cardior of Cardiquar and Cardior of Cardiquar and Cardior of Cardior of Cardior of Cardior of Cardiorcult Stanford University, Stanford, CA, USA 8 Department of Obstetrics and Gynecology, Stanford University, Stanford, CA, USA 9 Institute for Cardiomyopathies Heidelberg and Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany 10 SOPHiA Genetics, St. Sulpice, Switzerland 11 Laboratoire de Cardioge´ ne´ tique Mole´ culaire, Centre de Biologie Et Pathologie EST,Lostices Civil De Lyon,Lyon,法国12个心脏病学系,Charite´ -Universita tsmedizin柏林,柏林,德国,柏林,柏林,13 DZHK:德国心血管研究中心,柏林,柏林,德国柏林,德国,14 DZHK,DZHK:德国副作用,副作用Embl Hebberg,Heidelberg,Heidelberg,Heidelberg,Heidelberg,Heidelberg,Heidelberg,Heidelberg联系 *信件:mmercola@stanford.edu(M.M.),larsms@stanford.edu(l.m.s.)
Jean Shin 1,2 , Shaojie Ma 3,4 , Edith Hofer 5,6 , Yash Patel 2 , Daniel E. Vosberg 2 , Steven Tilley 2 , Gennady V. Roshchupkin 7,8,9 , André MM Sousa 10 , 雪球健 11 , Rebecca Gottesman 12 , Thomas H. Mosley 13 , Myriam Fornage 11 、 Yasaman Saba 14 、 Lukas Pirpamer 5 、 Reinhold Schmidt 5 、 Helena Schmidt 14 、 Amaia Carrion-Castillo 15 、 Fabrice Crivello 16 、 Bernard Mazoyer 16 、 Joshua C. Bis 17 、 Shuo Li 18 、 琼阳 18 、米歇尔·卢西亚诺 19,20 , Sherif Karama 21 , Lindsay Lewis 21 , Mark E. Bastin 19,22 , Mathew A. Harris 22,23 , Joanna M. Wardlaw 19,24 , Ian E. Deary 19,20 , Markus Scholz 25,26 , Markus Loeffler 25,26 , A. Veronica Witte 27,28,29 , Frauke Beyer 27,28 , Arno Villringer 27,28,29 , Nicola J. Armstrong 30 , Karen A. Mather 31,32 , David Ames 33,34 , Jiyang Jiang 31 , John B. Kwok 35,36 , Peter R. Schofield 32,36 , Anbupalam Thalamuthu 31 , Julian N. Trollor 31,37、玛格丽特·J·赖特 38,39、亨利·布罗达蒂 31,40、魏文 31、Perminder S. Sachdev 31,41、Natalie Terzikhan 9、Tavia E. Evans 7,9、Hieab HHH Adams 7,9、M. Arfan Ikram 7,9,42、Stefan Frenzel 43、Sandra van der Auwera-Palitschka 43,44、Katharina Wittfeld 43,44、Robin Bülow 45、Hans Jörgen Grabe 43,44、Christophe Tzourio 46,47、Aniket Mishra 46、Sophie Maingault 48、Stephanie Debette 46,47,49、内森·吉莱斯皮50、Carol E. Franz 51,52、William S. Kremen 51,52,53、Linda Ding 54、Neda Jahanshad 54、ENIGMA 联盟、Nenad Sestan 3,4、Zdenka Pausova 1,58,59、Sudha Seshadri 49,55、Tomas Paus 2,56,57以及 NeuroCHARGE 工作组
相邻芳香核之间的相互作用通常会导致螺旋结构,并由于轨道重叠的变化而影响沿柱状堆栈的电荷载流子传输。4 因此,PAH 中 p 堆积和氢键的充分结合使我们能够在很宽的温度范围内建立所需的液晶结构。PAH 的一个特例是萘嵌苯,它由近稠合萘组成。5 最突出的分子体系是苝四羧基二酰亚胺 (PDI),它根据其取代基和功能团组装成不同的螺旋结构。6 取代基通常以对称方式连接在 PDI 核心的两个酰亚胺位置上,并提供例如分子间氢键和 p 堆积相互作用。对于 PDI 1 螺旋纳米纤维,由于相邻分子的酰胺基团之间的氢键而组装(图 1)。 7 纤维的螺旋节距为几十纳米,这归因于定向氢键。两个酰亚胺位置上具有高空间需求的取代基也用于控制分子堆积。PDI 2 的树枝状基团刺激分子的横向旋转,并根据 PDI 核心和树枝状基元之间柔性间隔物的长度诱导复杂的螺旋柱状组织。螺旋柱可以包含 PDI 四聚体作为基本重复单元,这些四聚体基于每个层中并排的两个分子。8 在另一个