自然产品研究是一种多样化的主题,可产生和利用大量不同类型的数据。基因组,蛋白质组学,代谢组,光谱或(Bio)化学数据可能每个人都可以从不同的角度照亮相同的生化实体,并有能力相互告知。例如,基因组学可以揭示生物体中天然产物产生的遗传基础,而代谢组学可以揭示产生的代谢产物。光谱数据可以提供对这些分子结构特征的见解,并且生化数据可以阐明所涉及的酶促途径。这些综合观点可以对自然产品结构和功能进行更全面的理解。但是,可以表征自然产品科学数据格局
1920-2020 - 一个世纪的聚合物和有机材料!有机材料由于碳基化合物的不同现有分子结构的巨大财富而导致其物理性质的巨大变化。这种众多属性的结果是,可以通过使用现代合成方法来旨意控制有机材料的功能和使用有机材料,从而实现许多先进的应用程序,这些应用仅几十年前就属于幻象领域。在本讲座中,将针对不同类型的(高级)合成和天然(大分子)有机材料讨论分子结构 - 特性关系,包括人造的聚合物,纳米颗粒,可降解的聚合物,聚合物涂层和新颖的加工方法,例如。3D打印。我们还将讨论聚合物和塑料以及潜在可持续替代品的生命终止。课程始于聚合物科学的史以及奇特的摩尔质量和摩尔质量分布,固有的合成和某些天然聚合物。摩尔质量的确定是所有有机材料的关键因素,并将涵盖为即将到来的主题的基础。方法将进行处理,该方法允许材料工程师根据分子结构定量估计物理特性。处理对结构(纹理)的影响以及对性质的影响(涂层,加工技术以及合成方式)。聚合物的一个特殊优势与它们的易用性对不同功能的最常用工业聚合物的主要类别的描述和比较将补充本课程。除了单组单相系统,聚合物混合物(混合物),块共聚物,组件和聚合物复合材料外,还将讨论。这些材料允许将单个成分的有用特性结合在一个系统中,并实现有针对性的改进特性。将处理聚合物的多组分相图的物理原理,以及块共聚物中的微相分离。
与化学物质不同,可以根据定义明确的分子结构和稳定的特性来识别该化学物质(例如,cas数,微笑),微型和纳米塑料颗粒(MNP)缺乏这种直接的分类。每个MNP都有自己的特征组合,包括聚合物组成,粒子尺寸(长度和宽度)以及形状以及形状以及物理化学特性,例如表面电荷,表面化学和塑料相关化学物质。此外,这些特征可能会随着时间而变化,特别是由于MNP暴露于自然环境时的退化过程。为了实现MNP的可靠危害和风险评估,有必要预测MNP的毒性,其性状组合尚未直接在实验室中进行测试。类似于将化学物质的分子结构与有毒结果联系起来的定量结构 - 活性关系(QSAR)模型,需要模型将MNPS性状与其毒性联系起来。最近收集的微塑料资源管理器(TOMEX)2.0数据库的毒性由290个发表的有关MNP对水生物种的效应的研究点的13,412个数据库组成,这为处理这项任务提供了独特的机会。使用TOMEX 2.0数据,我们对任务进行了机器学习模型,以预测未经测试的MNP的毒性(存在/不存在效果方向,有效浓度)。我们还比较了根据分配的质量分数根据研究质量过滤数据集时的预测是否发生变化。我们比较了两种机器学习算法(增强回归树和深神经网络)的预测性能,并使用可解释的AI(平均边缘效应)的方法来洞悉毒性结果与MNP特征,实验参数和物种特质之间的关系。最后,我们讨论了如何使用此类模型来预测MNP的环境相关混合物的毒性,以及它们如何在将来有助于毒性较小,更环保塑料材料的发展。
1920-2020 - 一个世纪的聚合物和有机材料!有机材料由于碳基化合物的不同现有分子结构的巨大财富而导致其物理性质的巨大变化。这种众多属性的结果是,可以通过使用现代合成方法来旨意控制有机材料的功能和使用有机材料,从而实现许多先进的应用程序,这些应用仅几十年前就属于幻象领域。在本讲座中,将针对不同类型的(高级)合成和天然(大分子)有机材料讨论分子结构 - 特性关系,包括人造的聚合物,纳米颗粒,可降解的聚合物,聚合物涂层和新颖的加工方法,例如。3D打印。我们还将讨论聚合物和塑料以及潜在可持续替代品的生命终止。课程始于聚合物科学的史以及奇特的摩尔质量和摩尔质量分布,固有的合成和某些天然聚合物。摩尔质量的确定是所有有机材料的关键因素,并将涵盖为即将到来的主题的基础。方法将进行处理,该方法允许材料工程师根据分子结构定量估计物理特性。处理对结构(纹理)的影响以及对性质的影响(涂层,加工技术以及合成方式)。聚合物的一个特殊优势与它们的易用性对不同功能的最常用工业聚合物的主要类别的描述和比较将补充本课程。除了单组单相系统,聚合物混合物(混合物),块共聚物,组件和聚合物复合材料外,还将讨论。这些材料允许将单个成分的有用特性结合在一个系统中,并实现有针对性的改进特性。将处理聚合物的多组分相图的物理原理,以及块共聚物中的微相分离。
因此,这项工作的目的是开发一个三维嬉戏模型的DNA模型,以使用各种材料和3D打印机来促进遗传学教学。使用这些材料,我们创建了1.5米高的DNA结构的详细表示,包括双螺旋桨和氮基碱。是一种互动模型,具有可拆卸和彩色的碎片,使学生可以操纵和观察DNA的结构。学生将能够拆除和重新组装模型,这将有助于他们了解核苷酸与碱基互补性之间的相互作用(腺嘌呤 - timini和cantosine-guanine)。这个3D模型允许对DNA分子结构进行清晰准确的可视化,成为教学学习过程中教师的宝贵工具
持续投资于 MS/MS 技术开发对于提供工具和工作流程至关重要,这些工具和工作流程可以表征越来越全面的化合物类别、分子结构和样品类型。因此,EAD 已被证明是一个改变游戏规则的技术,可以改变 MS/MS 实验并能够获取必要的碎片数据。本白皮书概述了当前 MS/MS 方法所面临的挑战以及使用新的可调 EAD 碎片可以实现的显著优势。示例展示了 EAD 在小分子和代谢物的结构解析、异构化合物的区分和定量、蛋白质修饰的识别和定位以及脂质的完整表征方面的强大功能。
欧盟委员会和经合组织最近的报告明确阐述了人工智能在科学领域的优势:制药行业可以通过分析分子结构、预测药物相互作用和确定新药的潜在候选药物来减少开发新药所需的时间和成本。在材料科学领域,人工智能可以通过模拟材料结构、预测材料行为和优化材料性能来简化开发用于各种应用的先进材料的过程。在气候科学领域,人工智能技术用于气候建模、环境监测和自然资源管理,以分析复杂的环境数据、预测气候模式和评估环境风险。人工智能驱动的洞察力有助于科学家更好地了解气候变化及其对生态系统的影响。8
蛋白室是通过自组装或特定蛋白的相位分离在活细胞中组装的不同结构。已经做出了重大努力,以发现其分子结构和形成机制,以及它们在细胞代谢的时空控制中的基本作用。在这里,我们回顾了合成蛋白室的设计和构建,以实现目标代谢途径的空间组织提高效率和特异性。特别是,我们重点介绍了隔离策略和最新示例,以加快理想的代谢反应,以减少有毒代谢中间体的积累并切换竞争的代谢途径。我们还确定了将这些设计师隔室开发为代谢重编程中的多功能工具包所需解决的最重要挑战。