摘要 — 我们介绍了 QFAST,这是一种量子合成工具,旨在产生短路并在实践中很好地扩展。我们的贡献是:1)一种能够对位置和拓扑进行编码的新型电路表示;2)一种具有迭代细化公式的分层方法,该方法将电路结构搜索期间的“粗粒度”快速优化与仅在最终电路实例化阶段进行的良好但较慢的优化阶段相结合。与最先进的技术相比,尽管 QFAST 不是最优的,但它可以为领域科学家使用的“时间相关演化”算法生成更短的电路。我们还展示了我们的公式在电路深度和运行时间方面的可组合性和可调谐性。例如,我们展示了如何通过在给定的层次结构级别插入最佳可用的第三方合成算法来生成更短的电路。可组合性实现了跨芯片架构的可移植性,这是现有方法所缺乏的。
摘要 在可再生能源的背景下,虚拟发电厂 (VPP) 被视为智能控制复杂、分散、分布式和异构发电过程的关键技术。然而,VPP 的经济和生态控制是一项非常关键的任务:由于 VPP 在复杂性、技术组合、环境条件和运行期间需要优化的目标方面具有很大的变化性,单个 VPP 的控制需要能够有效地考虑所有这些单独的约束条件。因此,我们在本文中提出了一种结合计算智能 (CI) 元启发式的 VPP 抽象控制方法,该方法旨在灵活适用于不同的 VPP 规模、目标和发电厂类型。此外,该方法还提供了构建分层 VPP 的可能性,因为这通常是系统运营商的要求。为了证明该控制方法的有效性,考虑了三个示例性优化目标,并将其应用于不同组合的扁平/分层 VPP:最小化运行储备需求、最小化 CO 2 排放量和最大化发电厂灵活性。此外,该方法与三个示例性 CI 元启发式方法相结合并进行评估:模拟退火 (SA)、粒子群优化 (PSO) 和蚁群优化 (ACO)。为了使这种先进的 CI 元启发式方法在优化问题中的使用合法化,梯度下降优化 (GDO) 作为一种传统的优化技术也被考虑在内。基于具体的示例场景以及广泛的汇总测试运行,结果表明该控制方法能够有效地优化各种 VPP 组合以实现给定的目标。
背景:对于中风幸存者来说,上肢功能的恢复仍然是康复过程中的一大挑战。文献表明,如果可以根据患者的临床特征进行个性化治疗,康复率可能会提高。然而,仍然缺乏关于如何为个体患者量身定制治疗方案的临床证据。机器人辅助治疗 (RT) 提供了一种直接的方法来调整个体患者的辅助-阻力连续体。在早期的 Brunnstrom 康复阶段,患者受益于辅助训练,而在后期阶段,阻力训练更受青睐。因此,RT 可能会增强常规治疗 (CT),但尚未研究 RT 在分层干预中的应用。本研究评估了在上肢训练方案之后采用 RT 的可能益处,该方案根据每个个体的 Brunnstrom 阶段进行分层。
二维Terahertz光谱(2DTS)是一种核磁共振的Terahertz类似物,是一种新技术,旨在解决复杂的凝结物质系统中的许多开放问题。常规的理论框架普遍用来解释离散量子水平系统的多维光谱,但是对于紧密相关的材料中的集体激发的连续性是不足的。在这里,我们为模型集体激发的2DT(即分层超导体中的Josephson等离子体共振)开发了一个理论。从远低于超导相变的温度下的均值轨道方法开始,我们获得了多维非线性响应的表达式,这些反应适合于从常规的单模式场景中得出的直觉。然后,我们考虑在超导临界温度t c附近的温度,其中超出均值字段的动力学变得重要,并且常规直觉失败。随着t c接近t c的浮动增殖,对非线性响应的主要贡献来自反向传播的约瑟夫森等离子体的光学参数驱动器,该驱动器与均值范围的预测质量不同。与此相比,与一维光谱技术相比,例如第三次谐波产生,2DTS可用于直接探测热激发的有限摩肌等离子体及其相互作用。我们的理论很容易在丘比特中进行测试,我们讨论了约瑟夫森等离子体的当前背景以外的含义。
吉利安格大学,杭州大学,中国摘要:在这项研究中,我们使用VASP(VIENNA AB INTIRIO仿真)软件包进行了第一原理计算,以研究晶体结构,电子结构和光学特性,用于新的分层三层金属chalcegenide,EU 2 Inte 5。我们的结果表明,欧盟2 Inte 5是一种非零间隙金属,其分层结构为特征,其特征是强层内原子键和弱层间相互作用,这表明其潜在的应用是纳米材料。我们还研究了光学特性,包括复杂进型常数的吸收系数,虚构和真实部分,并发现EU 2 Inte 5在紫外线和可见光和蓝绿色的光线以及蓝绿色的光线下表现出强烈的光响应特性,峰值在389 nm和477 nm和477 nm和477 nm的波长处。这表明它可以用于开发UV(紫外线)检测器和其他光电设备。此外,由于其强吸收,低损失和低反射率,EU 2 Inte 5具有用作太阳能电池中有前途的光伏吸收层的潜力。关键词:三元金属醇酯,第一原理计算,分层结构,光学特性。1。简介
a如果年龄> 65或> 4个VRD循环,请考虑用G-CSF加Cytoxan或Plerixafor动员; B持续时间通常直到基于耐受性进展为止; c在基线时2级或更高级神经病患者中,对于因神经病而需要降低或停止bortezomib的患者,请考虑使用Carfilzomib。
立方体改变了空间行业,提供了一种经济高效,有效的方式来进行各种空间任务,从科学观察到高级通信[1,2]。上升的重点是为航天器配备具有先进的自主决策能力[3,4]。实现这一目标取决于使用自动化计划工具来减少人类参与并有效地处理复杂和不确定的环境。在航天器任务中实施车载计划机制带来了可观的好处,包括提高航天器的可用性,提高可靠性和降低地面部门的运营成本。尽管有潜力,但由于处理限制,Cubesats在分布式系统中面临着重大的任务计划挑战[5]。有效的能源管理是主要问题,因为它们依赖有限的太阳能电池板衍生的能源。 确保它们在这些约束中运行,同时保持空间的高可靠性强调了卫星操作中容错的重要性[6]。有效的能源管理是主要问题,因为它们依赖有限的太阳能电池板衍生的能源。确保它们在这些约束中运行,同时保持空间的高可靠性强调了卫星操作中容错的重要性[6]。
hafsa bahaar,1 S. Giridhar Reddy,2,* B. Siva Kumar,2,* K. Prashanthi 1和H. C. Ananda Murthy 3摘要摘要是开发了一种新的纳米载体,以解决与癌症治疗相关的衰减副作用,特别是用于送达Sorafenib(SF)(SF)。这种纳米载体利用可生物降解的聚合物,通过实现受控药物释放和降低毒性,它采用了有希望的抗癌症治疗方法。纳米载体的设计包括Fe 3 O 4纳米颗粒,藻酸钠,木质磺酸,聚乙烯乙二醇,SF药物和MGAL层的双氢氧化物涂层。使用各种技术(包括FT-IR,TGA和FESEM)对纳米载体进行了广泛的表征。值得注意的是,与其他变化相比,SF的受控释放中,氧化铁纳米颗粒(IONP)纳米载体具有显着优势。纳米载体组件之间的化学相互作用显着促进其增强的稳定性,如热重分析所证明的那样。此外,XRD分析证实了最终样品的结晶性质。FESEM图像提供了纳米载体组合形态的视觉确认。此外,动力学模型还验证了SF从复合藻酸盐基质中持续释放。这些发现共同强调了该纳米载体系统的潜力,作为在癌症治疗中递送SF药物的有效方法,同时最大程度地减少副作用。
1 Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA 2 Department of Mechanical and Aerospace Engineering, Utah State University, Logan, Utah 84322, USA 3 U.S. Army Combat Capabilities Development Command Chemical Biological Center, Research & Technology Directorate, Aberdeen Proving Ground, MD 21010, USA 4 Ballydel Technologies, Inc., Wilmington, DE 19803,美国5电气与计算机工程系,特拉华大学,纽瓦克大学,德国,19711年,美国6材料科学与工程系,特拉华大学,纽瓦克大学,纽瓦克,19711年,美国,美国
现有文献的证据表明,ABO血液组可能会通过影响凝血途径的影响来调节血栓形成风险,尤其是通过Von Willebrand因子(VWF)和VIII因子水平来调节血液群。与血型O的人相比,具有非O血组(A,B和AB)的个体通常具有更高的VWF和VIII水平。这些升高的VWF和VIII因子水平促进了血栓性状态,可能会增加动脉和静脉血栓形成的风险。这样的发现提出了一种可能性,即非O血液组个体可能患有冠状动脉支架血栓形成的风险更高,尤其是在其他危险因素(例如抗血小板疗法不足或高血小板反应性)的情况下。