神经科学对脑网络进行了广泛的研究,以便更好地理解人类行为以及识别和描述神经和精神疾病条件下的分布式脑异常。已经提出了几种用于脑网络分析的深度图学习模型,但大多数当前模型缺乏可解释性,这使得很难从结果中获得任何启发性的生物学见解。在本文中,我们提出了一种新的可解释图学习模型,称为分层脑嵌入(HBE),以根据网络社区结构提取脑网络表示,从而产生可解释的分层模式。我们应用我们的新方法从使用 ICA 从人类连接组计划扫描的 1,000 名年轻健康受试者获得的功能性脑网络中预测攻击性、违反规则和其他标准化行为分数。我们的结果表明,所提出的 HBE 在预测行为指标方面优于几种最先进的图学习方法,并且展示出与临床症状相关的类似分层脑网络模式。
答:NEA 采用美国疾病控制与预防中心 (CDC) 建议的分层缓解策略,以创建一个安全健康的面对面交流空间,同时为无法满足 NEA 的 COVID-19 要求或因 COVID-19 而患重病风险较高的人提供虚拟选项。没有一项安全措施是独立的;只有将二者结合起来,才能为活动中的每个人提供最安全的体验。CDC 建议参加大型聚会的人及时接种疫苗,并建议在疫苗接种不及时的情况下不要出行。我们密切监测我们计划和举办活动的地区的 COVID-19 情况,虽然 Omicron 激增似乎已经过去,但全国各地似乎越来越多传染性变种病毒正在增加。为了促进最安全、最健康的活动,我们认为此时保持分层缓解方法至关重要。我们的分层缓解策略包括:
由2D材料组成的异质结构已经在电子和镁质等技术领域中开放了许多新的可能性,但是如果增加2D材料的数量和多样性,则可以实现更多。到目前为止,从在环境条件下表现出分层相的材料中提取了几十个2D晶体,完全忽略了在其他温度和压力下可能存在的大量分层材料。这项工作证明了如何通过使用氧化石墨烯作为模板材料,在室温下如何在室温下将这些结构稳定在2D Van der Waals(VDW)中。具体而言,铜和碘的环境稳定2D结构通常仅在645至675 K之间的高温下以分层形式出现。结果为生产更多异国情调阶段而建立了一个简单的途径,否则,对于环境中的实验而言,难以或不可能稳定稳定。
efrag - 欧洲财务报告咨询小组 - 开发了欧洲可持续性报告标准(ESRS),该标准为公司报告环境,社会和治理(ESG)主题提供了一个框架。必须对所有受公司可持续性报告指令(CSRD)约束的公司报告12个标准
1。引言创建照片现实和动态的人类化身具有广泛的应用,包括虚拟试验,电影和游戏制作,虚拟助手,AR/VR以及远程介绍。传统上,此过程需要培训,这使得普通用户无法访问。最近,基础扩散模型的进步加速了旨在使3D Human Avatar创建民主化的研究工作,从而可以通过文本[16、46、51、88]或图像[39]易于用户控制。早期的3D人头像创作的方法将头发,身体和衣服作为单层表示,因此由于其纠缠的几何形状,很难独立模拟或编辑每个区域。为了解决这一限制,重新制作的工作使用了分层结构来分别反映身体,服装或头发[27,36,82,96]。,这些方法中的许多方法都依赖于nerf [58]等隐性代表来定义服装或毛发地理。尽管隐式表示有助于从基础扩散模型中利用先验知识,但它们在现有模拟器中进行动画挑战,这是由于身体运动而引起的头发和服装的现实运动。结果,这些方法难以生产动画时看起来很现实的化身。因此,出现了一个自然的问题:我们可以设计3D化身生成管道,该管道可以利用图像扩散模型中的丰富的先验知识,同时与现有的模拟管道兼容?解决此问题的关键挑战在于连接当前模拟器和文本驱动的头像生成管道中使用的不同表示。前者通常会重新使用平滑清洁的非紧密网格或特定设计的头发链,其拓扑是可以优化的,并且很难约束。十大的后者采用隐式表示(例如NERF [58]或SDF [83]),尽管它们可通过嘈杂的监督信号来优化来自扩散模型的嘈杂监督信号,但不能轻易地转换为适合模拟的开放网格或发束。为了解决这些问题,我们提出了一个新颖的框架Simavatar,该框架从文本提示中生成了3D人体化身,可以很容易地通过现有的头发和服装模拟器来动画。关键思想是为不同的人类部位(例如头发,身体和服装)采用合适的代表,并利用图像扩散模型和模拟器的先验知识。为此,我们提出了使用头发束代表人头发,身体和饰物的几何形状,参数身体模型SMPL [55],
摘要 — 在分层结构的云/边缘/设备计算环境中,工作负载分配会极大地影响整个系统的性能。本文讨论了大都市地区急诊室 (ER) 或重症监护室 (ICU) 产生的面向 AI 的医疗工作负载。目标是优化 AI 工作负载到云集群、边缘服务器和终端设备的分配,以便在救生紧急应用中实现最短的响应时间。特别是,我们为分布式云/边缘/设备计算系统中的 AI 工作负载开发了一种新的工作负载分配方法。开发了一种高效的调度和分配策略,以减少总体响应时间以满足多患者的需求。我们从综合边缘计算基准 Edge AIBench 中应用了几个 ICU AI 工作负载。涉及的医疗保健 AI 应用包括呼吸急促警报、患者表型分类和生死威胁。我们的实验结果证明了现实生活中的医疗保健和紧急应用中的高效率和有效性。
此预印本的版权所有者此版本于 2021 年 2 月 16 日发布。;https://doi.org/10.1101/2021.02.13.21251688 doi: medRxiv preprint
使用分层 K 均值聚类的激光雷达数据分类 Nesrine Chehata a,b , Nicolas David b , Frédéric Bretar b a Institut EGID - Université Bordeaux 3 - Equipe GHYMAC Allée Daguin 33607 Pessac- Nesrine.Chehata@egid.u-bordeaux3.fr乙国家地理研究所 - MATIS Av. 实验室Pasteur 94165 St. Mandé cedex, France- nicolas.david@ign.fr, frederic.bretar@ign.fr Commission III, WG III/3 关键词:遥感、LIDAR、层次分类、DTM、多分辨率 摘要:本文涉及使用激光雷达点云过滤和分类来建模地形,更一般地用于场景分割。在本研究中,我们建议使用众所周知的 K 均值聚类算法来过滤和分割(点云)数据。K 均值聚类非常适合激光雷达数据处理,因为可以根据所需的类别使用不同的特征属性。当仅处理 3D 点云时,属性可能是几何或纹理的,但当联合使用光学图像和激光雷达数据时,属性也可能是光谱的。该算法基于固定的邻域大小,可以处理植被茂密的陡峭地貌、山区区域和呈现微地形的地形。我们的算法的新颖之处在于提供分层分割聚类来提取地面点。聚类分割的数量用于自动限定分类可靠性。这一点在以前的工作中很少被处理。此外景观< /div>
与之前被禁的研究相比,意识研究正成为科学前沿的几项重大挑战之一。随着上个世纪热情的先驱者应用双眼竞争、裂脑、盲视和其他范式(Seth,2018),神经科学中出现了意识的经验理论。目前,情况已经达到了一个充满希望和挑战的临界点,因为大量的意识理论(ToC)都声称自己有各自的合理性,而这些理论都有特定的经验支持,它们提出的猜想导致了不同的预测(Del Pin 等人,2021 年;Signorelli 等人,2021 年;Seth 和 Bayne,2022 年;Yaron 等人,2022 年)。人们讨论了各种理论,看来这个问题正变得越来越普遍。目前,不同团体和领域之间缺乏合作,阻碍了意识理论的进步。然而,未来有望出现一种不受个体理论界限限制的基础理论(Koch,2018)。在此过程中,四种主要的 ToC 获得了最多的关注( Seth and Bayne,2022):整合信息理论(IIT)(Tononi,2008;Oizumi 等,2014;Tononi 等,2016)、全局神经工作空间理论(GNWT)(Dehaene,2014;Mashour 等,2020)、高阶理论(HOT)(Lau and Rosenthal,2011;Brown 等,2019),以及循环加工理论(RPT)(Lamme,2018)和预测加工理论(PP)(Seth and Hohwy,2021)。简而言之,IIT 将任何有意识的体验与相应状态下系统的最大不可约因果结构联系起来; GNWT 认为,由广泛的神经激发和跨多个认知模块共享信息所引发的全局工作空间是实现意识的关键;HOT 基于意识体验的高阶结构,其中“我”意识到“某事”(“某事”的表征是一阶的)。同时,RPT 和 PP 强调自上而下的处理在有意识的心理活动中的重要性。第五种方法并没有将意识归因于神经活动,而是将意识与跨多个时空尺度的底层物理过程联系起来。作为一个典型且著名的范式,精心策划的客观还原 (Orch OR,参见 Hamerooff 和 Penrose,2014) 理论声称,根据哥德尔不完备定理 (Penrose,1999),理解、自由意志或洞察力等心理方面无法用图灵机计算。它将意识与量子力学过程联系起来。意识场论将不确定的粒子状和波状现象比作“神经元-波二象性”(John, 2001),并提出大脑中广泛存在的电磁(EM)场可能是意识的物理相关物(Hunt and Jones, 2023)。
摘要 本文提出了一种增强型三层预测分级电源管理框架,以实现孤岛微电网的安全经济运行。保证微电网经济运行的三级控制建立在基于半定规划的交流最优潮流模型之上,该模型定期向二级控制发送功率参考。为减轻可再生能源发电和负荷带来的不确定性,提出并实施了一种集中式线性模型预测控制 (MPC) 控制器用于二级控制。MPC 控制器可以通过密切跟踪来自三级控制器的参考信号来有效地调节微电网系统频率,并且计算复杂度较低。实施基于下垂的初级控制器来与次级 MPC 控制器协调,以实时平衡系统。微电网电源管理框架中模拟了同步发电机 (SG) 和太阳能光伏 (PV)。提出了一种统一线性输入状态估计器 (ULISE),用于 SG 状态变量估计和由于网络物理系统组件受损等而导致的控制异常检测。仿真结果表明,可以准确估计 SG 状态,同时可以有效检测控制信号的不一致性,以实现增强型 MPC。此外,与传统的比例积分 (PI) 控制相比,所提出的分层电源管理方案表现出卓越的频率调节能力,同时保持较低的系统运行成本。