viticola,但在与Vinifera V. Vinifera中的病原体进行亲密的身体相互作用后被抑制。相比之下,V。139
对于解决地热井中HPHT条件引起的钻井问题的可能性,需要进行热稳定的地热钻泥系统的发展。这是由于高温对HPHT条件下泥流体的降解影响而发生的。挑战在于设计一种可以承受高压,高温(HPHT)条件的合适钻孔液。本研究旨在提供既便宜又环保的新添加。在应用于HPHT钻井环境时,添加剂有可能匹配或超过现有添加剂的性能。几层石墨烯(FLRGO)是通过根据Hummer方法制备的氧化石墨烯获得的。然后,还用两种类型的纳米颗粒装饰了还原的石墨烯表面,以通过简单的溶液混合技术获取两种不同组合物的纳米复合材料。使用氮化硼(BN)纳米颗粒制备了第一个石墨烯纳米复合材料(RGB),其比率不同,以产生三组从1到3。使用氮化钛(TIN)纳米颗粒获得了第二个(RGBT),其百分比不同,以产生六组从1捐赠至6。The prepared reduced graphene oxide along with its nitrides nanocomposites were intensively investigated using several characterization techniques including scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), Fourier transfer infrared spectroscopy (FTIR), X-ray diffraction (XRD), and thermal gravimetric analysis (TGA).因此,0.2、0.6和1 wt。在高温和压力下(230°C,17000 psi)到(80°C,2000 psi),研究对纳米复合材料均研究了如何影响水基钻孔液的流变学和过滤特性。%用作泥样样品的添加剂,并相对于参考泥浆进行了评估。的结果强调,在温度和压力升高时,带有60%石墨烯的RGBT样品,参考样品塑料粘度,20%硝酸硼和20%氮化钛的含量增强了10%至59%,17%至17%至61%至61%至61%和20%至67%(0.2 wt%),(0.2 wt%),浓度(0.6 wt),(0.6 wt tostive)和(0.6 wt t t t t t t t。同样,产量点分别提高了44%至88%,49%至88%和50%至89%。两种纳米复合材料在HPHT条件下均显着降低了滤液损失。这些发现表明,发达的纳米增强钻孔液可以抵抗高级钻孔操作中遇到的严重条件,并在较高温度下具有更好的热稳定性。
Alix Untrau,Sabine Sochard,FrédéricMarias,Jean-Michel Reneaume,Galo A.C.le roux等人。一种快速准确的1维模型,用于动态模拟和优化分层的热量存储。应用能量,2023,333,pp.120614。10.1016/j.apenergy.2022.120614。hal-03947326
符合可持续发展目标的能源转型要求在大多数能源需求领域迅速采用可再生能源 [1,2] 。热能存储 (TES) 具有在发电、工业和建筑等不同领域实现可再生能源高份额的巨大潜力 [3,4] 。TES 的优势特性包括可变的存储容量和持续时间、灵活的供需脱钩、灵活的集成方式 [5] 和生命周期优势,引起了各个能源市场的特别关注。根据 IRENA 的符合《巴黎协定》的能源转型情景 [6] ,预计未来 10 年安装的 TES 容量将增加三倍,从 2019 年的 234 GWh 增加到 2030 年的至少 800 GWh。
摘要。患者分层通过基于其分子和/或临床特征鉴定出不同的亚组,在个性化医学中起着至关重要的作用。但是,许多基于机器学习的分层技术无法识别与每个患者组相关的本质生物标志物特征。在本文中,我们提出了一种使用分层集合聚类来解释的患者分层的新方法。我们的方法利用具有与主成分分析(PCA)结合的采样,以捕获最重要的模式和贡献生物标志物。我们使用机器学习基准数据集和来自癌症基因组地图集(TCGA)的现实世界数据的方法的有效性,展示了检测到的患者簇的可解释性。
Cannie 4,Nisha A.Glotra 1,Chary Cappeletto 6,Christian Medo 7,Ardan M. Saguner 8,Firat Duru 8,Robyn J. Hylind Cadri-Tourigny 11,Maddalena 12,Elena Biagini Giulio Count 17,Claudio Tondo 18:19,Momina Yazdani 20,21,James S. Ingres 24,Flavia Ader 25,26,Giovanni Perette 27,马修·泰勒(Matthew Taylor)7,路易莎(Luisa Master 7) 2.35‡2.35‡。您Riele 3.35‡,Perry Elliott 4,Hugh Calkins 1,Katherine C. Wu 1和Cynthia A. James1¶您Riele 3.35‡,Perry Elliott 4,Hugh Calkins 1,Katherine C. Wu 1和Cynthia A. James1¶
房颤(AF)是最常见的持续性心脏烦恼,影响了全世界数百万的人,并且由于其与中风,心力衰竭和死亡率的增加相关,因此造成了巨大的公开负担[1,2]。观察性研究表明,包括收缩压(SBP),舒张压(DBP)和脉压(PP)在内的血压参数之间存在潜在的关联,以及AF的发展[3,4]。但是,这些观察性关联可能会被各种环境和生活方式因素混淆,从而使建立因果关系具有挑战性。重要的是,越来越多的证据表明,AF的病理生理学和危险因素可能存在性别差异。以前的流行病学研究报告说,男性和女性之间AF的患病率,发生率和结果的不同,女性通常表现出不同的危险因素特征和较差的预后[5-7]。然而,性别之间的血压与AF风险之间的关系是否有所不同,并且这些特定性别相关的因果性质尚未得到很好的确定。为了解决这些知识差距,我们采用了性别分层的两样本孟德尔随机化方法(MR)方法。MR将遗传变体用作工具变量来研究因果关系,同时最大程度地减少混杂和反向因果关系[8]。详细信息,例如人口的招聘标准和遗传数据的质量控制,可以在原始论文中找到[9]。通过分析性别和性别特异性遗传数据,我们的研究旨在确定不同的血压参数(SBP,DBP和PP)与AF风险之间的潜在因果关系,并特别着重于确定这些关联中任何性别特异性模式。The GWAS summary data of blood pressure phenotypes (including sex-pooled SBP, female-specific SBP, male-specific SBP, sex-pooled DBP, female-specific DBP, male-specific DBP, sex-pooled PP, female-specific PP and male-specific PP) were obtained from a recent study based on sex-specific genetic architecture of blood pressure.从NEALE LAB UKBB GWAS第2轮获得了性别pool的AF,特异性AF和男性特异性AF的GWAS摘要数据。可以在网站https://www.nealelab.is/uk-biobank上找到详细信息,例如人口的重新策略和遗传数据的质量控制。
本研究介绍了一种用于测量电解质密度和评估铅电池分层的新电化学方法的开发和验证。所提出的方法基于两个电极之间的电位差,一个电极由 PbO 2 组成,另一个电极由 Pb 组成,两个电极均通过循环伏安法制备和表征。通过X射线衍射(XRD)和扫描电子显微镜(SEM)证实了电极的形成及其形貌,揭示了特征性的三维结构的存在。使用已知密度的电解质溶液进行的测试表明,测得的电位差和电解质的实际密度之间存在极好的相关性,与使用便携式数字密度计进行的测量相比,精度为±0.001 g/cm3。该方法在60Ah商用电池中进行了铅电池的实际应用,验证了所提出的技术,并与商用设备获得的数据显示出显著的相关性。电解质分层是铅电池中的一个关键问题,而开发的方法提供了一种有效且低成本的工具来监测这种现象。该技术可应用于各种研究项目,以提高铅电池的性能和耐用性。
图4和图5显示了厚度H = 16和λ= 0的浮膜的涡度场和循环结果。25我们观察到涡度场沿垂直于观测平面的方向更强(请参阅3)。图4,我们在x -z平面中显示了涡流流和循环模式的“前”视图,我们期望ωy中的涡度大于其他平面。图5,我们在y -z平面中显示了同一情况的涡度场,这就是φ=π/ 2的情况,在那里我们观察到涡度ωx and涡流和该平面上的循环大于其他组件。