增材制造 (AM) 是一种使用多种方法最终应用材料层并制造产品的技术 (Ford & Despeisse, 2016; Ford, Mortara & Minshall, 2016)。尽管近年来增材制造技术得到了扩展,但其在制造业中的应用已有几十年 (Ford, Mortara, et al., 2016)。自 20 世纪 80 年代末以来,增材制造已从简单的产品设计(专注于原型设计和定制)发展到如今收入达数十亿美元并大规模生产消费品和工业产品 (Cotteleer, 2014)。预测显示,到 2020 年,增材制造市场将接近 100 亿美元,其中汽车、航空航天和医疗行业将处于领先地位 (Cotteleer, 2014)。目前,制造商可以使用多种增材制造技术,尽管这些技术的最终产品具有类似的分层结构,但工艺却大不相同。国际标准化组织 (ISO)/美国材料与试验协会 (ASTM) 标准 52900:2015 (ASTM F2793) 将 AM 工艺分为七类:粘合剂喷射、定向能量沉积、材料挤出、材料喷射、粉末床熔合(包括几种烧结方法)、板材层压和桶光聚合(表 1,第 36 页)。不仅机器和工艺技术存在很大差异,材料机会也存在很大差异。常用的原材料包括各种塑料和金属,但使用活组织、玻璃和复合材料的新发展正在进入 AM 世界(Cotteleer,2014 年)。与 AM 相比,更常见的是减材制造,它只是涉及从更大的供应中去除材料以生产商品(Ford 和 Despeisse,2016 年)。典型的减材制造涉及使用车床、计算机数控 (CNC) 机床和钻头或锯子根据规格去除材料 (Langnau, 2011)。减材制造的历史比 AM 还要悠久
哺乳动物的大脑由数千万到数千亿个神经元组成,这些神经元以毫秒级的时间尺度运行,而目前的记录技术只能捕捉到其中的一小部分。能够以高时空分辨率对神经活动进行采样的记录技术一直难以扩展。研究最深入的哺乳动物神经元网络(例如大脑皮层)呈现出分层结构,其中最佳记录技术可在大面积上进行密集采样。然而,对特定应用设计的需求以及大脑的三维结构与二维微加工技术之间的不匹配严重限制了神经生理学研究和神经假体。在这里,我们讨论了一种可扩展神经元记录的新策略,即将玻璃包覆微线束与来自高密度 CMOS 体外 MEA 系统或高速红外摄像机的大规模放大器阵列相结合。由于玻璃包覆微线中芯金属的高导电性,允许使用超薄金属芯(低至 < 1 µ m)和可忽略不计的杂散电容,因此实现了高信噪比(< 25 µ V RMS 本底噪声,SNR 高达 25)。尖端的多步电化学改性可实现超低接入阻抗和最小几何面积,这与芯直径基本无关。我们表明,可以减小微线尺寸,以几乎消除插入时对血脑屏障的损伤,并且我们证明微线阵列可以稳定地记录单个单元活动。将微线束和 CMOS 阵列相结合可以实现高度可扩展的神经元记录方法,将电神经元记录的进展与硅微加工的快速进展联系起来。系统的模块化设计允许自定义记录位置的排列。我们采用微创、高度绝缘和功能化的微线束将二维 CMOS 架构扩展到第三维,这种方法可以转化为其他 CMOS 阵列,例如电刺激设备。
摘要:拓扑化学是指固态反应的一般类别,其中前体和产品在其晶体结构中表现出强烈的案例。各种低维材料通过在其2D板之间或通过范德华(VDW)相互作用束缚的1D链之间容纳来宾原子或分子,都会受到这种逐步结构的转化。这些过程是由客人和主机框架之间的氧化还原反应驱动的,在这些反应中,过渡金属阳离子已被广泛利用为氧化还原中心。拓扑化学加上这种阳离子氧化还原,不仅可以采用诸如锂离子二级电池之类的技术应用,而且还可以作为分层过渡金属化合物的结构或电子微调的强大工具。近年来,我们一直在追求超出这种阳离子氧化还原拓制化学以外的材料设计,该底座层次化学大多仅限于2D或1D VDW系统。为此,我们提出了由2D阵列的非VDW化合物的新的拓扑化学反应,该反应由阴离子chalcogen二聚体的2D阵列与氧化还原intert宿主阳离子层交替。发现这些chalcogen二聚体与外部金属元件发生氧化还原反应,触发(1)插入这些金属以构建2D金属硫化剂,或(2)(2)去构成chalcogen anions。从整体上讲,这种拓扑化学就像“拉链”,在那里,阴离子chalcent-chalcogen键的还原性裂解为非VDW材料的空间打开了空间,从而形成了新的分层结构。关键字:拓扑化学,阴离子氧化还原,插入,辣椒剂,低维材料■简介这种观点简要总结了阴离子氧化还原拓扑化学实现的独特结构转换的开创性示例以及其合成和特征的挑战。
n + p 2 s 6(M = V,Fe,Ni,Co和Zn; X = 0.5-1,N = 2或3)在P 3̅1M空间组中结晶,而Li 2 Mnp 2 S 6在R 3̅中结晶。所有化合物通过边缘共享MS 6八面体和p 2 s 6单位的li原子占据层间空间的2D分层结构。X射线衍射和热重分析揭示了这些材料的自发水插入趋势,当它们暴露于空气中以进行较短和延长的时间,导致了两个不同的水合相(HY-I和HY-II)。热赋形图证明了从层间区域去除水分子时相变的可逆性。来自单晶和同步粉X射线衍射的水合I期I相结构表明形成了具有层间膨胀的水的单层。此外,Li 4 -nx m x n + p 2 s 6(M = V,Mn,Fe和Ni)在经受液体或气态氨环境时在层间空间中对NH 3插入的亲和力也很大。Li 2 Mp 2 S 6(M = M = MN和Ni)上的磁测量表明,化合物的顺磁性降至2 K. AC AC阻抗光谱在LI 2.56 Zn 0.72 Zn 0.72 p 2 s 6显示了室温离子电导率2.69×10-3 ms/cm,li 2. 5 s 6,li s n li z 6,li s in li s均高。 0.72 p 2 s 6比其无水对应物显示出7倍离子电导率(1.85×10-2 ms/cm)。该研究还报告了第一次使用液体电解质的锂离子电池中的Li 2 Fep 2 S 6中的电化学LI(DE)插入。■简介
哺乳动物的大脑由数千万到数千亿个神经元组成,这些神经元以毫秒级的时间尺度运行,而目前的记录技术只能捕捉到其中的一小部分。能够以高时空分辨率对神经活动进行采样的记录技术一直难以扩展。研究最深入的哺乳动物神经元网络(例如大脑皮层)呈现出分层结构,其中最佳记录技术可在大面积上进行密集采样。然而,对特定应用设计的需求以及大脑的三维结构与二维微加工技术之间的不匹配严重限制了神经生理学研究和神经假体。在这里,我们讨论了一种可扩展神经元记录的新策略,即将玻璃包覆微线束与来自高密度 CMOS 体外 MEA 系统或高速红外摄像机的大规模放大器阵列相结合。由于玻璃包覆微线中芯金属的高导电性,允许使用超薄金属芯(低至 < 1 µ m)和可忽略不计的杂散电容,因此实现了高信噪比(< 25 µ V RMS 本底噪声,SNR 高达 25)。尖端的多步电化学改性可实现超低接入阻抗和最小几何面积,这与芯直径基本无关。我们表明,可以减小微线尺寸,以几乎消除插入时对血脑屏障的损伤,并且我们证明微线阵列可以稳定地记录单个单元活动。将微线束和 CMOS 阵列相结合可以实现高度可扩展的神经元记录方法,将电神经元记录的进展与硅微加工的快速进展联系起来。系统的模块化设计允许自定义记录位置的排列。我们采用微创、高度绝缘和功能化的微线束将二维 CMOS 架构扩展到第三维,这种方法可以转化为其他 CMOS 阵列,例如电刺激设备。
纳米尺度的材料表面和界面已成为跨学科研究的引人入胜的主题,因为过去20年中许多有希望的应用。高度复杂的技术和新颖的材料家族已经出现了爆炸性的增长和令人信服的催化功能(Jiang等,2021),能源(Janek and Zeier,2016年),环境科学,环境科学(Kartal,2010年),生物医学,生物医学(Zhang et al。。在观察到的材料表演背后发展理论对于该跨学科领域的可持续成功以及成功实施新材料和过程中的下一代高级材料也至关重要。在本期特刊中,我们介绍了纳米级内材料表面和接口的结构,属性和技术应用的研究。该集合专用于跨学科的研究论文,将材料科学,生物学科学和化学的知识和实践整合到关键应用中。本期特刊中包含了两篇研究论文和三个评论,该论文为读者提供了纳米级材料表面和接口的理论和技术的选定案例,可以在各个方面有助于材料化学的进步。第一本研究文章由捷克共和国Palacký大学Olomouc的Michal Otyepka小组撰写,重点介绍了材料表面和界面的纳米结构。合成的石墨烯铁碳化物杂种具有纳米级孔径的分层结构。Chenxuan Wang的小组,来自这种新颖的结构导致令人着迷的性能,并在抗坏血酸内检测多巴胺时具有令人满意的检测极限。这表明材料表面和接口上的纳米结构对于高级材料的出色性能至关重要。第二篇研究文章由北京化学技术大学的成本HE组撰写,专注于材料表面和界面的技术应用。通过尖端的单分子力光谱观察到二氧化硅结合肽SB7和玻璃表面之间的相互作用力,并且通过分子动力学模拟揭示了以下理论。本研究表明,适当的技术的选择是揭示纳米级材料表面和界面的奥秘,从而区分新材料的性能。三篇评论文章强调了材料科学,与生物相关的科学和化学的结合,并在表面和生物医学应用的界面上结合在一起。
卫生与公众服务部 医疗保险和医疗补助服务中心 马里兰州巴尔的摩市安全大道 7500 号 21244-1850 医疗保险和医疗补助服务中心 日期:2022 年 9 月 26 日 致:所有 D 部分发起人 发件人: 医疗保险药品福利和 C&D 数据组主任 Amy Larrick Chavez-Valdez 医疗保险计划支付组主任 Jennifer R. Shapiro 医疗保险计划支付组主任 Jennifer Lazio C 和 D 部分精算组主任 主题:2023 合同年计划与《降低通货膨胀法案》对 D 部分疫苗和胰岛素覆盖范围更改相关的指导 本备忘录旨在为 D 部分发起人提供实施第 11401 节(医疗保险第 11401 部分下免疫实践咨询委员会推荐的成人疫苗覆盖范围)的指导D) 和 2022 年 8 月 16 日颁布的《通货膨胀削减法案》(IRA,PL 117-169 1) 第 11406 节 (Medicare Part D 下承保的胰岛素产品的适当费用分摊)。这些变化将于 2023 年 1 月 1 日生效,适用于所有 Part D 计划,包括雇主团体豁免计划。本指南专门针对 2023 年合同年 (CY)。有关未来合同年的单独指南将在稍后发布。 2023 合同年度计划投标,包括处方集 D 部分赞助商不应提交请求,以反映已提交并获批准的 2023 日历年的投标中的新疫苗和胰岛素要求。社会保障法(该法案)的新第 1860D-15(h) 节规定,为 2023 计划年度提供临时追溯补贴,金额等于由于应用该法案第 1860D-2(b)(8) 和 (9) 节的新要求而导致的成本分摊和免赔额的总减少额。如该法案第 1860D-2(b)(4)(C) 节所述,临时追溯补贴计入 D 部分参保者进入灾难阶段所产生的成本。D 部分赞助商也不应提交请求,以通过计划更正模块更正其计划福利方案 (PBP) - 包括成本分摊、分层结构或两者 - 以反映这些新要求。此外,临时追溯的成本分摊和免赔额的总额减少
1。Contents and Qualification Objectives Contents • Coordination chemistry : mechanisms of reactions of coordination compounds (ligand exchange, electron transfer reactions) • Reaction steps in homogeneous catalysis: oxidative additions and reductive eliminations, σ-bond metatheses, insertion and elimination reactions • Transition metal compounds : metal hydrides and metal organyls, carbene complexes, olefin complexes (synthesis, structure, bonding and reactions) - metal activation of industrially relevant substrates, like dihydrogen, alkanes, carbon monoxide, olefins • Main group element organyls : element organyls of the boron group (triels) – hydroboration and carbometallation reactions • Structural chemistry of inorganic solids : structural arguments, packing types in solid compounds, phase transitions, systematic通过填充八面体和四面体间隙,分子晶格,链条结构,分层结构,网络结构,直径的结构来扣除从密集的球体包装开始的结构。• Intermetallic phases and compounds : alloys, Zintl phases and Zintl salts, polycationic and polyanionic clusters of the main group elements, Wade's rules • Subvalent transition metal compounds : magnetic phenomena, metal-metal bonding, metal-metal multiple bonding, metal clusters, condensation of clusters, metal rich compounds, cluster connection • Solid-state materials : precious stones,它们的使用和生产,钻石和钻石合成,富勒烯,碳纳米管,石墨烯•固体中的化学键:电子带结构理论的介绍,状态的密度,晶体轨道。课程格式资格确定目标•获取对现代无机分子化合物的最重要类别的增强知识•对O过渡金属氢化物,基基和碳复合物的更深入了解同质催化中的基本步骤o同质催化的基本步骤,小分子激活o结构和结构型固体式和化学构成的构建和化学构成•形成型结构和化学的结构•化合物•化学•化合物•化学•化合物•化学•化学•在讨论未知化合物的讨论中获得的知识的使用•信息管理•批判性思维•解决问题的技能•彻底的知识和分析技能,用于计划复杂化学分子的合成途径•对复杂问题的分析和反思•增强交流的能力2。
1。引言创建照片现实和动态的人类化身具有广泛的应用,包括虚拟试验,电影和游戏制作,虚拟助手,AR/VR以及远程介绍。传统上,此过程需要培训,这使得普通用户无法访问。最近,基础扩散模型的进步加速了旨在使3D Human Avatar创建民主化的研究工作,从而可以通过文本[16、46、51、88]或图像[39]易于用户控制。早期的3D人头像创作的方法将头发,身体和衣服作为单层表示,因此由于其纠缠的几何形状,很难独立模拟或编辑每个区域。为了解决这一限制,重新制作的工作使用了分层结构来分别反映身体,服装或头发[27,36,82,96]。,这些方法中的许多方法都依赖于nerf [58]等隐性代表来定义服装或毛发地理。尽管隐式表示有助于从基础扩散模型中利用先验知识,但它们在现有模拟器中进行动画挑战,这是由于身体运动而引起的头发和服装的现实运动。结果,这些方法难以生产动画时看起来很现实的化身。因此,出现了一个自然的问题:我们可以设计3D化身生成管道,该管道可以利用图像扩散模型中的丰富的先验知识,同时与现有的模拟管道兼容?解决此问题的关键挑战在于连接当前模拟器和文本驱动的头像生成管道中使用的不同表示。前者通常会重新使用平滑清洁的非紧密网格或特定设计的头发链,其拓扑是可以优化的,并且很难约束。十大的后者采用隐式表示(例如NERF [58]或SDF [83]),尽管它们可通过嘈杂的监督信号来优化来自扩散模型的嘈杂监督信号,但不能轻易地转换为适合模拟的开放网格或发束。为了解决这些问题,我们提出了一个新颖的框架Simavatar,该框架从文本提示中生成了3D人体化身,可以很容易地通过现有的头发和服装模拟器来动画。关键思想是为不同的人类部位(例如头发,身体和服装)采用合适的代表,并利用图像扩散模型和模拟器的先验知识。为此,我们提出了使用头发束代表人头发,身体和饰物的几何形状,参数身体模型SMPL [55],
(U) A. 任务描述 Cryptologic 项目由空军电子密钥管理系统 (AFEKMS) 组成。AFEKMS 与 NSA 的 EKMS 协同工作,为空军 C4I 和武器系统的密钥材料、语音呼号和通信安全 (COMSEC) 出版物的电子生成、分发、核算和管理提供安全灵活的功能。AFEKMS 取代了现有的物理分发和管理系统,为美国空军信息保障提供加密密钥材料。信息保障强调访问控制、多级安全数据库、可信计算和信息完整性。AFEKMS 是一种分层排列的三层系统结构。这种分层结构提供了从“批发”到“零售”再到“消费者”分发、管理和核算 COMSEC 密钥材料的能力。第 1 层安装包括“批发”功能。第 2 层安装包括分销网络,第 3 层包括“零售地点”,密钥材料从 AFEKMS 离开并进入最终项目 COMSEC 设备 (EICE)。采购包括商用现货 (COTS) 计算机和软件、承包商开发的应用软件、政府提供的设备 (GFE) 和 NSA 的本地 COMSEC 管理软件 (LCMS) 等软件。美国空军开发的用户应用软件 (UAS) 是提供特定功能所必需的,用于独特的密钥管理系统,例如 F-22、高级 EHF COMSEC/TRANSEC 系统 (ACTS)、联合攻击战斗机,以及用于空军应用的 ECU 的独特密钥填充要求,例如 ARC-210、战斗机数据链、机载集成终端组和多波段多模式无线电。UAS 导入 LCMS 用户界面,将多个独立的 UAS 集成到一个共同支持的包中,并在无法集成时调节独特的 UAS。还将独特的用户应用软件与 NSA 提供的软件更改隔离开来,并允许手动操作员流程自动化,以节省人力、减少所需培训并提高任务效率。总体而言,AFEKMS 将通过大大增强传统密钥管理系统的机密性、完整性和不可否认性来改善对国家安全相关信息的保护。AFEKMS 将大大加快通过电子传输而不是材料运输获得密钥的速度,并将提高任务响应能力和灵活性。虽然包括升级功能以在可能的情况下使用重新托管操作、COTS 和面向用户的软件在技术上刷新系统,但最终目标是提供一条迁移路径,以迁移到 NSA 密钥管理基础设施 (KMI) 计划下计划的类似功能。此类 KMI 功能预计将于 2015 年左右出现。