摘要 - 当前的电力系统由于发电和终端用法之间的空间拆分而遭受固有的效率低下和传输线的拥塞。这可能引入了满足负载需求,网格责任,可再生投资组合标准以及环境考虑因素(例如碳排放减少目标)的缺点。分布式能源资源(DER)技术的经济和技术可行性可能会加速向更可持续的能源生产的过渡。本文使用分布式能源客户采用模型(DER-CAM),研究了DERS的经济和环境益处以及住宅的公用事业价格和排放。结果表明,CO 2排放和电力成本之间的权衡,但在购买电力方面有所改善。
Laneless和无方向运动是高速公路网络中连接和自动化车辆(CAVS)的轨迹行为的新型特征。应用此概念可以利用高速公路的最大潜在能力,尤其是在分布不均的方向需求下。尽管如此,消除了在车道和方向的分离域上的传统概念,因此可以增加混乱的驾驶行为和碰撞风险(从而损害安全性)。因此,本文的重点是在这种未来派环境中为骑士的轨迹规划,其双重目标是(i)提供和确保安全性,而(ii)提高了绩效性能。为此,我们提出了一种骑士的算法,以区分潜在的冲突车辆与自己的方向和/或反对的传播流(整个本文档中所谓的威胁)在早期(及时)阶段。之后,威胁工具被聚集为威胁群体。作为下一步,开发了一个分散的非线性模型预测控制(NLMPC)框架,以调节每个单个威胁集群中车辆的运动;从这个意义上讲,这是分别应用于每个群集中的分布式控制器。该控制方法的设计方式可以实现上述双重目标,结合了官能安全性和效率。最后,通过微观仿真研究对所提出的方法的性能进行了研究和评估。结果是有希望的,并确认了公路网络所提出的方法的效果。
气候变化显着和不利影响了全球环境,生物多样性和可持续的人类发展,主要是通过修改全球温度模式,水文循环和诱导酸性(Habib等,2025)。海洋中的主要反应变量(例如,物理,化学和生物学)可以用作气候变化影响的前哨指标。在当代和即将到来的气候变化情景中,预期的水生生物多样性的灭绝率通常大于陆地物种的灭绝率(Huang等,2021)。小规模的鱼纹(SSFS)显着有助于粮食安全,减轻贫困,就业和维持健康的海洋生态系统(Gatta,2022),因此促进了某些可持续发展的发展目标的实现。尽管是全球数百万的主要生计选择,但SSF遇到了与全球化,气候变化和过度融化相关的不确定性和可变性的升级(Nilsson等,2019)。气候变异性通过影响杂种资源,捕捞者的生计以及更改人口和生产价值来对SSF构成重大危险(Mbaye等人,2023年)。沿海地区尤其容易受到全球变暖的有害影响,这主要是在陆地和海洋因素的收敛中。影响可能是海洋,生态或社会经济。海洋变暖有海洋学的意义包括在杂种季节的改变,弯曲位置的变化以及由于波高和湍流风而引起的与海上活动相关的危险(N'Souvi等,2024)。同时,捕捞收入的不可预测性以及即将来临的气候变化造成的潜在生物多样性损失(Pörtner等人,2023年)分别体现了社会经济和生态经济和生态学的反应。气候变化的其他后果包括沿海水温的变化,降水模式,海平面上升,沿海流量和侵蚀的变化,这显着影响的多样性,分布和丰度,随后影响海洋生物生物系统和生态系统,以及n's sherfculations n s shefivies n's''s''s''''souvient''。例如,海平面的上升通过降低薄壁架的生产力和价值来影响沿海景观和社区的生计(N'Souvi等,2024),从而损害了融化操作的安全性和效率(Bertrand等人,2019年)。此外,降水,暴风雨发生和干旱模式的变化影响了水流量,从而影响了沿海地区的物种运动和招募模式以及盐度水平(Trégarot等,2024)。因此,海温的加速升高(Cheng等,2019),盐度(Cheng等,2020),海平面(Kulp and Strauss,2019),酸性(Cattano等,2018)和脱氧(Kwiatkowski等,2020年),MARRINANT在MARRINANT中,MARRINANT在MARRINANT上,一定的物种和偏移分配,一定的物种和境内迁移。 Venegas等人,2023年),丰度降低(McCauley等,2015),以及生产力的转变(Venegas等,2023),通过改变季节性模式和减少的填充效率和减少的填料(france and france and france and france),从而导致社会经济的影响。
使用条款本文从哈佛大学的DASH存储库下载,并根据适用于其他已发布材料(LAA)的条款和条件提供,如https://harvardwiki.atlassian.net/wiki/wiki/wiki/wiki/wiki/wiki/wiki/wiki/wiki/wiki/ngy/ngy/ngy5ngy5ndnde4zjgzndnde4zjgzntc5ndndndgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgiamsfyytytewy
H ∞ 滤波器针对的是噪声过程统计数据不确定的情况,此时我们的目标是最小化最坏情况而不是估计误差的方差 [ 3 , 26 ]。该滤波器限制了将扰动映射到估计误差的传递函数的 H ∞ 范数。然而,在瞬态操作中,会失去所需的 H ∞ 性能,并且滤波器可能会发散,除非每次迭代中都有一些(通常是限制性的)正性条件成立。在集值估计中,扰动向量通过有界集(如椭球)建模 [ 4 , 22 ]。在该框架中,我们试图围绕与观测值和外生扰动椭球一致的状态估计构建最小椭球。然而,由此产生的稳健滤波器会忽略任何分布信息,因此倾向于过于保守。 [19] 首次研究了一种对更一般形式的(基于集合的)模型不确定性具有鲁棒性的滤波器。该滤波器以迭代方式最小化标准状态空间模型附近所有模型的最坏情况均方误差。虽然该滤波器在面对较大不确定性时表现良好,但在较小不确定性下可能过于保守。[25] 提出了一种广义卡尔曼滤波器,它可以解决这个缺点,在标准性能和最坏情况性能之间取得平衡。通过最小化矩生成函数而不是估计误差平方的均值,可以得到风险敏感的卡尔曼滤波器 [24]。这种风险敏感的卡尔曼滤波器等同于 [12] 中提出的分布鲁棒滤波器,它最小化标准分布周围的 Kullback-Leibler (KL) 球中所有联合状态-输出分布的最坏情况均方误差。 [27] 研究了更一般的 τ -散度球的扩展。
植物多样性与环境反应策略之间的相互作用对于生态系统适应性和稳定性至关重要。现代生态学中的一个主要重点是阐明环境因素如何塑造植物多样性模式并调节跨异构景观的物种分布。这项研究采用联合物种分布模型(JSDM)来定量分析中国甘西省植物空间分布的环境变量的影响,同时检查不同条件下的种间相互作用。结果表明,环境因素解释了95.4%的方差,强调了它们在确定植物分布中的主要作用。栖息地类型占差异最大的份额(33.5%),其次是高程(22.1%),平均年温度(20.3%),平均年降水量(15.1%)和太阳辐射(4.4%)。物种对环境协变量的反应主要是独立的,系统发育相关性较弱(后平均值:0.17),反映了家庭一级的有限的生态利基保守主义。从地理上讲,北部Qilian山麓丘陵,Lanzhou-Baiyin荒野,Loess Plateau和Gannan Plateau等地区与大多数植物家庭表现出负相关,在空间变异性中起着关键的限制或驱动因素的作用。此外,有33.7%的种子植物家族与光强度显示出负相关,强调其作为主要限制因素的作用。省级,竞争并不能主要限制甘努的种子植物共存。通过识别跨异质然而,在区域上,观察到明显的环境反应差异。在西北,太阳辐射(37%)和降水(25%)是植物分布的主要驱动因素,而在东南部,太阳辐射(36.3%)和高度(34.7%)占主导地位。这些发现强调了物种共发生的模式是规模依赖性的,并且受区域资源可用性的影响。在资源丰富的东南地区,植物家庭表现出积极的共同出现模式,指示相互作用或共生相互作用,而由于增强了分散竞争的增强,资源筛查的西北地区经历了强化的负面共发生。这项研究强调了环境梯度在gansu中构建种子植物分布中的关键作用,从而提供了对生态适应和进化史相互作用在塑造植物多样性中的相互作用的见解。
国税局通常要求您从雇主计划中进行应税提款,不迟于您达到72岁(如果出生于1949年7月1日之前出生的70½岁)或从雇主发起该计划的雇主退休,以稍后的计划,除非您的计划规定另有规定,否则这些强制性提款通常被称为必需的最低分布。如果您不接受RMD,则可能会蒙受重大的联邦税收罚款。
出版商的陈述,这是作者的作品版本,该作品被接受以供可再生能源出版。由出版过程产生的变化,例如同行评审,编辑,校正,结构格式和其他质量控制机制,可能不会反映在本文档中。自从提交出版以来,可能已经对这项工作进行了更改。随后发表了一个确定的版本,以可再生能源(157,(2020))https://doi.org/10.1016/j.renene.2020.05.024
要查看此改进的明确证据,我们要求PG&E提供一份清单,以显示其新模型如何改变其缓解措施的地理目标。尽管他们无法提供此信息,但PG&E描述了使用该模型的内部过程。长期计划过程依赖于主题专家(SME)来制定降低风险措施,并且在共享和讨论模型结果的风险建模团队与中小型企业之间进行了多次会议和讨论。但是,PG&E没有保留任何正式的前后记录,无法清楚地证明对建议或建造的模型影响。使用中小企业制定缓解措施与公用事业行业的标准实践一致,用于制定分配风险措施。
信息保护是现代社会的关键要求之一。在大多数情况下,通过使用加密等加密技术来确保信息安全性。加密通常被理解为使用某种算法[1]所需的信息的转换(明文)到加密消息(Ciphertext)中。同时,为了实现加密,通信的合法各方需要一个所谓的加密密钥,这是一个秘密参数(通常是一定长度的二进制字符串),该参数决定执行加密时的特定信息转换。关键分布问题是密码学中最重要的问题之一[1,2]。例如,参考。[2]强调:``键与它们加密的所有消息一样有价值,因为对密钥的知识提供了所有信息的知识。对于跨越世界的加密系统,关键分布问题可能是一项艰巨的任务。''可以使用几种加密密钥分布的方法。首先,可以使用可信赖的快递员交付键。这种方法的主要缺点是人类因素的存在。此外,随着每年传输数据键的增加,身体转移变得越来越困难。另一种方法是公钥密码学。它基于使用所谓的单向函数的使用,即易于计算但很难为给定函数值找到参数。示例包括Diffie±Hellman和RSA(来自Rivest,Shamir和Adleman的缩写)算法(用于加密信息开发,但也用于密钥分布),这些算法使用了解决离散对数和Integer分支问题的复杂性。Internet上传输的大多数数据都受到使用公共算法的使用,该算法包含在HTTPS(HYPEXT TRANSPRAND SECURES SECURE)协议中。
