本文旨在分析两种可能的系留卫星系统架构的性能,这些系统用作分布式雷达探测仪的平台。第一种架构是横向轨道定向的系留卫星系统,利用与低地球轨道稀薄大气相互作用产生的空气动力进行控制和稳定。第二种架构涉及通过陀螺稳定控制的系留卫星系统,通过使系统围绕轨道平面内的轴旋转来实现。在简要介绍雷达探测技术之后,介绍了描述系统几何形状及其特性的方法,然后将这两种架构的性能相互比较并与当前最先进的技术进行比较。通过分析建模的标称行为,结果表明,这两种提出的架构可以在一个轨道内分别以最大横向轨道分辨率实现连续或多次观测,从而最大限度地减少杂波噪声。与通常每条轨道只能实现最多四次观测的编队飞行架构相比,这是一种显著的性能改进。最后研究了每种架构的优缺点,并讨论了其可能的任务场景。
摘要高保证加密术的领域很快就已经成熟,但对于端到端的端到端验证了效果有效的加密实现,仍然缺失了尚未确定的基础框架。为了解决此差距,我们使用COQ证明助手正式连接三个现有工具:(1)Hac-特定的紧密加密规范语言; (2)用于效果,高保证加密实现的茉莉语; (3)模块化加密证明的Ssprove基础验证框架。我们首先将HACSPEC与Ssprove连接起来,通过设计了从HACSPEC规范到命令式Ssprove代码的新译本。我们通过考虑从HACSPEC到纯粹的功能性COQ代码的第二次,更标准的翻译来验证这一翻译,并生成两个翻译产生的代码之间的等价性的证明。我们进一步定义了从茉莉蛋白到ssprove的翻译,这使我们能够在ssprove中正式推理有关茉莉蛋白中有效的加密信息。我们证明,相对于Jasmin的操作语义,在COQ中正确地证明了这一翻译。最后,我们通过给出有效的AES的基础端到端COQ证明,证明了方法的有用性。在此案例研究中,我们从使用硬件加速的AE的现有茉莉实现开始,并证明它符合HACSPEC编写的AES标准的规格。我们使用Ssprove基于AES的Jasmin实施来形式化加密方案的安全性。
国际计算机工程技术杂志(IJCET)第16卷,第1期,Jan-Feb 2025,pp。2439-2452,文章ID:IJCET_16_01_174在https://iaeme.com/home/issue/issue/ijcet?volume=16&issue = 1 ISSN印刷:0976-6367; ISSN在线:0976-6375;期刊ID:5751-5249影响因子(2025):18.59(基于Google Scholar引用)doi:https://doi.org/10.34218/ijcet_16_01_174©iaeme Publication
摘要无线网络的快速发展正在通过启用无缝,低延迟的通信来改变各种域,从eHealth系统转变为无人机群和自动驾驶汽车。在医疗保健中,无线传感器和5G网络正在通过连续的数据收集,远程诊断和个性化治疗方法彻底改变患者监控,从而确保高可靠性传播。同时,无人机(无人机)群越来越多地部署在诸如灾难响应,环境监测和交付服务等平民应用中,需要可扩展的通信协议以实现有效的数据交换和与地面站的协调。随着这些技术收敛,人工智能(AI)正在成为下一代无线网络的关键推动因素,从而通过网络节点级别的预测分析来增强系统性能。通过预测网络条件,AI赋予了自动驾驶汽车和无人机,以增强互操作性,优化路由,动态调整通信策略并改善跨应用程序的资源管理。本演讲将探讨分布式数据传输协议中的挑战,当前的进步和未来的研究方向,重点关注它们在整合EHealth系统,无人机群,自动驾驶汽车和AI-Driendiven网络中的作用,以开发更适应性和智能的通信基础设施。
摘要 - 为了使人形机器人能够在共有的环境中稳健地工作,多接触运动不仅在四肢(例如手脚),而且在四肢的中间区域(例如膝盖和肘部)的中间区域进行接触。我们开发了一种实现这种全身多接触运动的方法,该运动涉及人形机器人在中间区域的接触。可变形的板状分布式触觉传感器安装在机器人四肢的表面上,以测量接触力,而无需显着改变机器人体形。较早开发的多接触运动控制器(专门用于肢体接触)扩展以处理中间区域的接触,并且机器人运动通过反馈控制稳定,不仅使用力/扭矩传感器,还可以使用分布式的触觉传感器来稳定。通过对Dynamics模拟的验证,我们表明,开发的触觉反馈提高了全身多接触运动的稳定性,以防止干扰和环境错误。此外,寿命大小的人形RHP kaleido展示了全身多接触运动,例如向前走,同时通过前臂接触支撑身体,并在坐着的姿势和大腿接触中平衡姿势。
摘要 目的 在通过脑机接口操纵假肢的过程中,皮质表面的分布式微刺激可以有效地向受试者提供反馈。这种反馈可以向假肢使用者传达大量信息,可能是获得假肢的精确控制和实施的关键。然而,到目前为止,人们对解码此类模式的生理限制知之甚少。在这里,我们旨在测试一种旋转光遗传反馈,该反馈旨在有效地编码假肢中使用的机器人执行器的 360° 运动。我们试图评估通过闭环脑机接口控制假肢关节的小鼠对其的使用情况。 方法 我们测试了小鼠优化虚拟假肢关节轨迹的能力,以解决奖励性伸手任务。它们可以通过调节初级运动皮层中单个神经元的活动来控制关节的速度。在任务期间,投射到初级体感皮层上的模式化光遗传刺激不断向小鼠传递有关关节位置的信息。主要结果 我们表明,小鼠能够在任务的主动行为环境中利用连续、旋转的皮质反馈。小鼠通过更频繁地检测奖励机会,以及通过将关节更快地移向奖励角区,并在奖励区停留更长时间,实现了比没有反馈时更好的控制。控制关节加速度而不是速度的小鼠无法改善运动控制。 意义 这些发现表明,在闭环脑机接口的背景下,可以利用具有优化形状和拓扑的分布式皮质反馈来控制运动。我们的研究直接应用于机器人假肢中经常遇到的旋转关节的闭环控制。 1. 简介
毫米波小细胞与定向光束形成的密集部署是一种有前途的解决方案,可增强当前无线通信的净工作能力。但是,毫米波通信链路的可靠性可能会受到严重的路径,阻塞和耳聋的影响。作为一种款项,移动用户受到频繁的交接,这会限制用户吞吐量和移动终端的电池寿命。为了解决这个问题,我们的论文提出了一个深层的多代理控制学习框架,用于分布式移交管理,称为Rhando(增强移交)。我们将用户建模为代理商,他们在考虑相关成本的同时,学习如何执行移交以通过网络优化网络。所提出的SOUTIOT已完全分布,从而限制了信号传导和计算开销。数值结果表明,与传统方案相比,所提出的解决方案可以提供更高的吞吐量,同时大大限制了移交的频率。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
Enterprise Edition Options: Multitenant 54,250 11,935 2,712,500 596,750 Real Application Clusters 71,300 15,686 3,565,000 784,300 Real Application Clusters One Node 31,000 6,820 1,550,000 341,000 Active Data Guard 35,650 7,843 1,782,500 392,150 Partitioning 35,650 7,843 1,782,500 392,150真实申请测试35,650 7,843 1,782,500 392,150高级压缩35,650 7,843 1,782,500 392,150 392,150高级安全46,230 2,230 2,230 2,2325,325,32511,11,32511,32511,11,32511,11,32511,11,11,32511,11,32511,32511,11,11,32511,11,11,32511,11,3232511,3232511,11111 1,782,500 392,150数据库保险库35,650 7,843 1,782,500 392,150 Timesten Timesten application-tier-tier-tier数据库CACHE 71,300 15,686 3,565,000 784,784,784,300数据库内存71,300 Database 71,300 15,686 3,686 3,686 3,5000,344,34,34,34,34,34,344,344,344,344,300,000,300,000,300,000,livem livent 23,250 5,115 1,162,500 255,750 Tuning Pack 15,500 3,410 775,000 170,500 Database Lifecycle Management Pack 37,200 8,184 1,860,000 409,200 Data Masking and Subsetting Pack 35,650 7,843 1,782,500 392,150 Cloud Management Pack for Oracle Database 23,250 5,115 1,162,500 255,750