我们研究的重点是由丙二醇、水和分散在其中的石墨烯纳米粉末组成的纳米流体。纳米流体是通过将丙二醇和水以 100:0、75:25 和 50:50 的比例混合而制成的。本实验中使用的基本流体是丙二醇和水。石墨烯分别以 0.25 和 0.5 的百分比分散在这三种不同的基础流体中。这项工作的主要目标是探索纳米流体的摩擦学行为。使用销盘装置观察了这种行为,并研究了负载对磨损、摩擦系数和摩擦力的影响。测试的重量范围为 1 至 3 公斤。结果表明,随着负载的增加,大多数测试样品的磨损量、摩擦系数和摩擦力都会降低。然而,某些样品的磨损量和摩擦系数(包括摩擦力)有所增加。
口服固体剂型形式是由于非侵入性,易于给药,缺乏微生物的关注等导致药物施用的普遍形式。但是,由于生物利用度问题,溶解度有限的API不适合口服。可以通过颊药物输送,微针,肠胃外给药,受控药物输送,纳米明确的药物递送,络合,液化技术51等来改善生物利用度。6-16。临床开发中约有40%的销售药物和90%的API面临溶解度的挑战。溶解度增强可以提高生物利用度,而生物利用度受到溶解度的限制,但不能受到药物吸收。可以通过几种方法来实现溶解度增强通常,某些多态性形式基于其热力学能量表现出更高的溶解度。使用这种多态性形式来增强溶解度可能会受到专利诉讼的限制17-21。溶解度增强技术是根据API和其他参数的性质选择的。无定形固体分散体(ASD)是API的溶解度增强技术,无法通过粒径减少来增强。热熔体挤出,喷雾干燥,湿球,动力醇,流体床涂料技术通常用于行业生产ASD。除了ASDS。热熔体挤出能够准备多种剂型,例如受控药物释放,膜,半固体,纳米颗粒等22-29。
在联邦强化学习(FRL)中,代理人旨在与每个代理商在其本地环境中行动而无需交换原始轨迹时进行协作。FRL的现有方法(a)都不提供任何容忍度的保证(针对行为不当的代理商),或(b)依靠可信赖的中央代理(单点失败)来汇总更新。我们提供了第一个分散的拜占庭式耐受性FRL法。为此,我们首先提出了一种新的集中式拜占庭故障稳定性政策梯度(PG)算法,该算法仅依赖于非耐受性PG的假设标准来改善现有方法。然后,作为我们的主要贡献,我们展示了如何利用强大的聚合和拜占庭式共识方法的结合,以消除对受信任的中央实体的需求。由于我们的结果代表了拜占庭式耐断层的非征料非凸优化的第一个样本复杂性分析,因此我们的技术贡献可能具有独立的利益。最后,我们为常见的RL环境证实了我们的理论结果,证明了分散的联邦W.R.T.的加速。对各种拜占庭攻击的参与代理的数量和弹性。
[o] NE应该谨慎对物理降解的精确定义。我们当然不想专注于减少一些简化的总体量度,以衡量经济中大量材料和物质(无论是库存还是流量)。并不是每个人都同意这一点 - 权利X的流行概念(x = 4、10等。),Wuppertal Institute推广的MIP,生态背包和TMR。计算总材料流是一个很好的消遣活动,但是我们应该关注与环境相关的物质/材料,并在任何聚合过程中分配这些适当的权重。总的来说,目前尚不清楚什么总物理量应完全降解 - 这里有一个测量或指标问题。(van den Bergh 2011,884)
脱碳,数字化和权力下放化是满足城市化快速发展的能源需求显着增长的三个关键支柱,这使全球低碳经济能够通过交易能源市场。在全球最终能源消耗中,建筑物和运输的总能源消耗量超过70%,但可再生能源的供暖,冷却和运输需求仅满足20%。因此,建筑物和电动汽车具有巨大的潜力,可以允许优化和平衡供求与其跨部门交易行为,以实现全尺度灵活性。本文提供了一个系统的概述,概述了电动汽车的建筑物和互动交易行为在建立能源物理空间,数据网络空间和人类社会空间的可持续交易能源社区中的积极作用。使用关键技术的低碳交易能源解决方案和高电动汽车密度的净零能量建设的最新进展,以层次结构方式讨论。物联网作为基本体系结构可以实现交易效果的数字化和互操作性。区块链作为核心元素实现交易能量的权力下放和透明度。边缘计算加速器可以减轻区块链问题并加快基于区块链的交易能量。对目前知名的项目和初创公司的全面调查,针对基于区块链的交易ERGY针对跨部门的本地社区,并最终提供了建筑物和电动汽车的建筑物和电动汽车,这是对这个有前途的地区的开放挑战和未来观点的局面。
隐私的支付系统面临着平衡隐私和问责制的艰巨任务:一方面,用户应该能够私下和匿名交易,另一方面,不应容忍非法活动。找到正确平衡的挑战性问题在于有关可靠隐私的研究的核心,该隐私规定使用加密技术来实施政策执行。当前的最新系统只能执行相当有限的政策,例如支出或交易限制或对单个参与者的主张,但无法制定更复杂的政策,例如,共同评估发送者的私人证书和收件人的私人证书,并以跨境支付为单独支付的情况,只需支付这项付款,而无需付款,请在此期间付款。这严重限制了可以按照法规遵守范围(例如金融行动工作组(FATF)旅行规则)使用降级的虚拟资产的案件,同时保留了强大的隐私功能。我们提出了不可链接的符合策略的签名(UL-PC),这是一种增强的加密原始性,扩展了Badertscher等人的工作。(TCC 21)。我们使用使用Charmcrypto进行的原型进行了严格的定义,正式证明的构造和基准,该原型对PC的可行性提供了第一个见解。不可链接的PC具有以下独特的功能组合:1这是一个增强的签名方案,其中公共密钥以隐私保护的方式编码用户的可验证凭证(从凭证授权获得)。2个签名可以通过将收件人的公共密钥指定为已确定的消息来创建(并在后来公开验证)。只有在签名者的属性𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥时,接收器的属性才能满足某些全局策略𝐹(𝑥𝑥,𝑥),才能创建有效的签名。3签名可以由签名者创建,只是知道收件人的公钥;无需进一步的互动,也没有泄漏信息(超出了政策的有效性)。4一旦获得了凭据,用户就可以生成新的公共钥匙,而无需与凭据互动。通过合并签署交易的行为,以提供对参与参与者遵守复杂政策的保证的行为,但要保留在不参与权威的情况下更改公共钥匙的情况,我们正式地展示了UL-PCS是如何改善Monero或ZCASH等隐私套件的一步。
摘要x-ai时代的特征是智力人类,自然,社会和人工(AI)的各种形式形式的协同作用。它代表了综合AI范式的生态系统,以及深度学习,大语言模型和生成AI应用的浮游生气的发展。x-ai对基本AI问题的辩论重新点燃:什么是AI?什么构成机器智能?在人工通用智能和类似人类的新时代,AI与业务和技术融为一体时有什么意义?本文旨在激发有关AI会议技术新时代的批判性思维,辩论和讨论,并通过X-AI启用X-Tech来塑造AI4Tech。我们探索X-AI和X-Tech的生态系统以及一般和领域的特殊AI4Tech领域。X-AI使X-Tech能够培养智能业务和智能技术的新时代。传统,人类般的,生成的,分散的,人形和元AI之间的协同作用解锁了克服先前的局限性,不可能,未知数以及对AI和技术的梦想的潜力。
本文研究了一个政策优化问题,这是由协作多代理强化学习在分散的环境中引起的,在该环境中,代理商通过无方向的图表与邻居进行交流,以最大程度地提高其累积奖励的总和。提出了一种新型的分散自然政策梯度方法,称为基于动量的分散自然政策梯度(MDNPG),提出了该方法,它结合了自然梯度,基于动量的方差降低,并梯度跟踪到分散的体积梯度梯度梯度上升框架中。MDNPG的O(n -1 ϵ -3)样品复杂性,以收敛到一个定位点,已建立在标准假设下,其中N是代理的数量。表明MDNPG可以实现分散策略梯度方法的最佳收敛率,并且与集中式优化方法相比,具有线性加速。此外,MDNPG的出色经验性能超过了其他最先进的算法。
农场存储和加工的可用性是小型农民面临的一项关键挑战,这阻碍了农业生产力。收获后,全球生产的食品中有30%丢失,由于缺乏农场处理和存储设施,低收入和中等收入国家的比例非常高。传统的冷藏解决方案尚未在小型持有人级别上取出,这主要是由于缺乏可靠的网格电力。因此,离网分散的太阳能冷藏单元可以在生产地点保存农产品,并以最小的碳足迹来保存生产地点,并增强生计和农村发展。为了在农业价值链的每个步骤中保持低温(称为“冷链”),旨在改善保质期和用户利益。小型农民占所有粮食损失的三分之二,是他们重点关注的另一组。本研究研究了分散的冷藏系统在新鲜水果和蔬菜中的现有情况,重要性和潜在机会。除了经济,社会,技术和环境局限性外,本研究还研究了将太阳能驱动的冷存储纳入发展中的社区的胜利和挑战。尽管私营部门,非政府组织和一些政府机构正在努力促进分散的冷藏设施,但到目前为止,几乎没有做到对收获后损失和粮食安全产生重大影响。在分散的冷藏设施上仍然存在知识差距。主要的运营限制是最终用户的经济状况以及小农户缺乏融资替代品。
识别活动位点。为了揭示Ni@Nincm的局部化学配位环境,我们进一步进行了XAS测量。ni k-边缘X射线吸附精细结构(XANES)光谱表明,Ni@nincm的预边是Nio和Ni Foil之间的(图4a),表明Ni@NINCM中Ni物种的平均价值处于部分氧化状态。这与以深红色圆圈标记的白线峰的高度保持一致。考虑到Ni NP的价为零,较高的氧化状态意味着除Ni@Nincm中的Ni NP外,Ni原子的另一种协调形式存在。扩展X射线吸收精细结构的傅立叶变换