本研究的目的是开发3D-QSAR模型,以验证奎诺林衍生物的降压活性,并深入了解改善活动的需求,以设计新的治疗剂的有效类似物。3D-QSAR分析模型是通过分子建模研究的良好性能和鲁棒性来验证的。我们利用K-Nearest邻居方法开发了一个3D-QSAR模型。3D模型具有交叉验证的Q 2(0.6923),相关系数r 2(0.7351)和PERE_R2(0.7015)的外部预测能力的值。获得了测试集的Pred_r 2的值,并给出了更好的结果,值为0.7015,这意味着外部测试集的70%预测能力。3D-QSAR模型探讨了改善活动的结构要求,以更好地理解活动的选择性。
螺旋对象通常在电子或机械微系统中实现,需要精确理解其机械性能。虽然已经深入研究了由圆柱形纤维形成的螺旋,但对螺旋形状的纤维膜的横截面的作用知之甚少。我们通过实验研究了由超薄PMMA丝带制造的微螺旋的力伸展响应。利用新实现的控制螺旋几何形状,量化螺旋螺距的影响,并突出显示了螺旋丝的显着性刺激。两种现象是确定的:从小螺距上的色带扭曲到高螺距上弯曲主导的状态的机械跃迁,以及纯粹的几何影响,特定于螺旋丝带。与先前建立的不可扩展性弹性条的分析模型发现了良好的一致性。
硅藻被描述为“纳米级光刻师”,因为它们能够制造复杂的三维无定形二氧化硅外骨骼。这些结构的层次结构为硅藻提供了机械保护以及过滤、漂浮和操纵光线的能力。因此,它们成为一种非凡的多功能材料模型,可供人们从中汲取灵感。在本文中,我们使用数值模拟、分析模型和实验测试来揭示 Coscinodiscus 物种硅藻的结构和流体动力学效率。然后,我们提出了一种新型的 3D 可打印多功能仿生材料,可用于多孔过滤器、热交换器、药物输送系统、轻型结构和机器人等应用。我们的研究结果证明了大自然作为高效可调系统的材料设计师的作用,并突出了硅藻在工程材料创新方面的潜力。此外,本文报告的结果为扩展硅藻的结构-性能表征奠定了基础。
因此,给定最终宽度和曲率半径 R,就可以预先确定所需光刻胶的高度。该模型假设光刻胶和基板之间的临界接触角没有影响,并为近似回流光刻胶形状提供了一个起点。参考文献 2 将临界角作为次要约束,并发现对于 S1818 光刻胶,其对回流温度(120 到 170°C 之间)的依赖性大约为 y = -0.2431x + 48.344。参考文献 3(配套论文)研究了 3 种描述光刻胶形状的分析模型。模型 A 使用 Sheridan 等人提出的 4 阶多项式模型;这与模型 B(“总和模型”)和模型 C(“乘积”模型)进行了比较,后两者均使用 4 阶多项式来捕捉与球形概念的偏差。使用边界条件计算系数,包括:面积、中心高度、边缘=0 和临界角。
本研究试图根据原始的改进二维剪切变形理论,阐明简支 FG 型性能梯度材料梁的静态行为分析。杨氏模量被认为是根据组成材料体积分数的幂律分布逐渐连续变化的。应用虚功原理得到平衡方程。因此,利用这里开发的分析模型和 Navier 的求解技术,对简支夹层梁的情况求解控制平衡方程。此外,利用数值结果计算无量纲应力和位移,并与其他理论得到的结果进行比较。提出了两项研究,比较研究和参数研究,其目的一是展示所用理论的准确性和效率,二是分析不同类型梁在不同参数影响下的力学行为。即边界条件、材料指数、厚度比和梁类型。
在当前科技革命和前所未有的大变革背景下,各国都面临着由贸易之争向生态和科技实力之争转变所导致的关键核心技术加速发展的态势。竞争态势分析是关键核心技术创新的重要环节,构建普适性的关键核心技术国际竞争态势分析模型,可以为科技创新决策者解决技术难题提供科学支撑。本研究以新一代信息技术产业为例,识别该产业的关键核心技术,评估世界主要国家的竞争态势。研究表明,在新一代信息技术领域,美国、日本处于全球领先地位,此外,中国在各领域都有活跃的创新活动,但总体与世界领先水平仍有较大差距,研发质量有待进一步提高。
最近,Ekşioğlu 的研究团队(由阿肯色大学、克莱姆森大学、德克萨斯大学圣安东尼奥分校的教职员工和学生以及爱达荷国家实验室 (INL) 的研究人员组成)正在开发分析模型,以设计一个可靠且高效的生物精炼厂生物质加工系统。这项研究由美国能源部的能源效率和可再生能源计划赞助。这项工作的动机是观察到散装固体处理和材料流经生物质加工系统的低效率。这些低效率是由于生物质特性(例如水分和灰分含量)的随机性,这会导致加工生物质的颗粒大小、形状和密度发生变化。过大的颗粒和灰分会堵塞气锁和气动传输管线,导致设备运行时间短/不可靠,反应器利用效率低。
•蛋白质科学中的数据库和软件工具•先进的风味化学•用于分析模型细菌中蛋白质复合物的方法•鉴定和表征食物传播的微生物•综合生物食品工程I - III•生物乙醇和蒸馏液和蒸馏精神•综合化学技术•杂种化学技术•杂种化学技术•遗传性化学技术, Process Engineering Techniques for Cereal Processing • Soft Matter Science I – Food Rheology and Structure • Food Process Design I – Efficient Processing and Transport Phenomena • Food Process Design II • Technologie Pflanzlicher Lebensmittel (taught in German) • Drying, Granulation and Instantization • Computational Thinking • Advanced Technologies for Dairy Products and Alternatives • UNIcertIII English for Scientific Purposes • Internship (R&D placement)