北卡罗来纳州立大学,教堂山,27599,北卡罗来纳州,美国 8 9 *通讯地址 10 Christopher E. Nelson,博士 11 生物医学工程系 12 120 John A. White Jr. 工程大厅 13 阿肯色大学 14 费耶特维尔,阿肯色州 72701 15 479-575-2615 16 nelsonc@uark.edu 17 18 摘要 19 巨噬细胞是再生医学和癌症免疫疗法等各种应用治疗的有希望的目标。由于其可塑性,巨噬细胞可以在最小的环境变化下从非活化状态转变为活化状态。为了使巨噬细胞在各自的应用中有效,有必要筛选表型变化以阐明细胞对不同运载工具、疫苗、小分子和其他刺激的反应。我们基于 NF- κ B 的激活创建了一种灵敏且动态的高通量巨噬细胞筛选方法。对于该报告基因,我们将 mCherry 荧光基因置于炎症启动子的控制之下,该启动子会募集 NF- κ B 反应元件来促进巨噬细胞炎症反应期间的表达。我们根据巨噬细胞炎症反应的关键标志物(包括 TNF- α 细胞因子释放和炎症和非炎症细胞表面标志物的免疫染色)来表征炎症报告基因。利用炎症报告基因,我们还能够创建 LPS 剂量曲线来确定报告基因的动态范围,并通过对刺激与非刺激处理的报告细胞进行时间点分析来确定报告基因对刺激的敏感性。然后,我们使用报告细胞系来确定递送效率和对不同病毒和非病毒基因递送载体的炎症反应。这里开发的筛选技术 34 提供了一种动态、高通量筛选技术,用于确定 35 小鼠巨噬细胞对特定刺激的炎症反应,并深入了解小鼠 36 巨噬细胞对不同病毒和非病毒基因传递方法的炎症反应。 37 38 简介 39 巨噬细胞是吞噬细胞,负责防御外来入侵者并维持 40 所有器官和组织 1-3 的体内平衡。根据微环境,巨噬细胞会改变功能 41 以响应局部需要。巨噬细胞的可塑性导致形成异质性 42 巨噬细胞表型群以应对情况,无论是防御、维持还是在 43 激活状态之间转换。巨噬细胞作为肿瘤相关巨噬细胞 (TAMS) 在肿瘤和 44 体内再生过程发挥作用。对于许多癌症来说,巨噬细胞在肿瘤 45 微环境中丰富,TAMS 负责促进转移、免疫抑制和 46 促进侵袭和血管生成 4 。巨噬细胞还负责维持从最初的炎症到清除外来入侵者的愈合过程,募集必要的免疫细胞,以及在再生的最后阶段解决愈合过程 5–9 。 49 50 巨噬细胞由于其在活化 51 状态之间切换的能力,可以参与各种各样的活动。对巨噬细胞极化状态的理解在不断发展,在最基本的层面上 52 要么是经典的激活/炎症状态,要么是激活/抗炎状态。这些 53 状态也被描述为 M0(静息)、M1(炎症)和 M2(抗炎)。由于 54 它们的实用性,巨噬细胞已被用于许多不同的应用,从肿瘤学的细胞疗法到再生中局部环境的重新编程 10–16 。虽然巨噬细胞提供了 56
面对身份不明的身体时,识别受害者可能会具有挑战性,尤其是在遮盖或掩盖的身体特征时。近年来,法医学中的微生物分析已成为一项尖端技术。它不仅表现出个人特异性,区分不同的人类生物群与发生的各个地点(例如胃肠道,口服,皮肤,呼吸道和泌尿生殖区),每个人都宿主既有不同的细菌种类,还可以洞悉事故的位置和周围环境。机器学习与微生物组学的整合为细菌物种分类与传统测序技术的分类提供了重大改进。本综述讨论了机器学习算法的使用,例如RF,SVM,ANN,DNN,回归和BN,以检测和鉴定各种细菌,包括炭疽芽孢杆菌,乙酰杆菌,乙酰杆菌,金黄色葡萄球菌,金黄色葡萄球菌和链球菌。深层倾斜技术,例如卷积神经网络(CNN)模型和衍生物,也被用来预测受害者的年龄,性别,生活方式和种族特征。预计,大数据分析和人工智能将来将在推进法医微生物学方面发挥关键作用。
摘要——纳米技术专家的需求量很大,而且由于纳米材料在各个行业得到广泛认可,这种需求每年都变得越来越迫切。纳米技术的特殊性取决于现有的各种纳米材料及其合成技术。这项研究提出了一种有效的技术来培训未来的纳米工程师在纳米结构合成中做出管理决策。此外,本文表明,使用 T. Saati 的层次分析方法为获得纳米结构提供了最佳解决方案。该分析基于最常用的合成技术,例如化学蚀刻、光电化学蚀刻和压印光刻。应用 T. Saati 的方法可以让未来的纳米工程师优化高质量纳米结构的合成,并确保经济和竞争优势并减少错误数量。
关于如何建造可持续月球基地的讨论自阿波罗计划之前就一直在进行,但尚未出现明确的答案。在本研究中,一种称为层次分析法 (AHP) 的决策支持工具用于缩小月球栖息地的最佳特征范围。简要介绍了 AHP 的数学基础及其批评。在确定了这些特征的核心设计特征和判断标准后,AHP 随后应用于月球栖息地。最终,我们确定充气栖息地在月球应用中应该略优于刚性栖息地,并且比其他栖息地概念更受青睐。混合结构可以在充气和刚性栖息地之间提供适当的折衷。AHP 还建议,使用 Vectran 约束层并使用柱状和隔间来部署栖息地比它们的替代方案更可取。此外,它还建议充气栖息地应该是圆柱形的,并加压至海平面压力。对这些结果进行了敏感性分析。通过这项研究,证明了如何使用 AHP 针对具有许多有影响的标准和潜在选项的复杂航空航天问题做出定量的、公正的决策。