摘要。预测隐藏在com-plex上下文中的对象的实例级掩码是伪装实例分割(CIS)的目标,这一任务因伪装的obs obsptss and Anckatiks之间的惊人相似之处而复杂。伪装观察的各种外观,包括不同的角度,部分可见性和模棱两可的信息,进一步加剧了这一挑战。先前的作品考虑在高不确定性区域内clasifulsiful sifialpixels,而无需考虑其文本语义,从而导致许多假阳性。我们提出了一种称为Mask2Camouflage的新颖方法,该方法同时增强了上下文特征的建模,并完善了实例级别的预测地图。mask2Camouflage利用多尺度功能集成了骨干线中提取的功能。然后,引入了全局细化的交叉注意模块(GCA),以补充前景面罩和背景掩盖,以减少假阳性。fur-hoverore,通过模拟全球换档聚类过程,我们介绍了全球偏移的多头自我注意力(GSA),该过程使对象查询不仅可以从早期功能中捕获信息,还可以从结构性概念中捕获信息,从而降低与评估的数据验证的掩体对象检测任务中的类内部问题。与15种最先进的方法相比,我们的Mask2Camouflage显着提高了伪装实例细分的性能。我们的代码可在https://github.com/underlmao/mask2camouflage上找到。
摘要:家禽业在全球农业中起关键作用,家禽是蛋白质的主要来源,并为经济增长做出了重大贡献。但是,该行业面临着与重复性且苛刻的劳动密集型任务相关的挑战。自动化已成为提高运营效率并提高工作条件的关键解决方案。具体来说,机器人的操纵和对象的处理在工厂中变得无处不在。但是,存在挑战以预先识别和引导机器人处理一堆具有相似纹理和颜色的物体。本文着重于开发旨在自动化鸡的机器人解决方案的视觉系统,该机器人解决过程是一种基本的,但在家禽加工中是一种基本但身体上剧烈的活动。为了解决通用实例分割模型在识别重叠对象中的限制,开发了一种具有成本效益的双重活性激光扫描系统来生成对象上的精确深度数据。将经过良好的深度数据生成与RGB图像集成在一起,并将其发送到实例分割模型以进行单个鸡检测和识别。这种增强的方法显着改善了该模型在处理涉及重叠鸡的复杂场景中的性能。具体而言,RGB-D数据的集成将模型的平均平均精度(MAP)检测准确性提高了4.9%,并显着改善了中心偏移 - 本研究中引入的定制度量标准,以量化地面真相蒙版中心与预测的面具中心之间的距离。精确的中心检测对于开发未来的机器人控制解决方案至关重要,因为它可以确保在鸡肉重定过程中准确抓住。中心偏移量从22.09像素(7.30 mm)降低到8.09像素(2.65 mm),证明了该方法在缓解闭塞挑战和增强视觉系统的可靠性方面的有效性。
摘要次数下器器官(SCO)是位于大脑中西尔维乌斯渡槽入口处的腺体。它存在于与两栖动物和人类一样远的物种中,但其功能在很大程度上是未知的。为了探索其功能,我们比较了SCO和非SCO脑区域的转录组,并发现了SPO,CAR3和SPDEF的三个基因,它们在SCO中高度表达。在胚胎发育过程中,这些基因内源性启动子/增强子元素表达CRE重物组合酶的小鼠菌株用于遗传烧蚀SCO细胞,从而导致严重的脑积水和神经元迁移和神经元素轴突的神经元迁移和发育的缺陷。无偏的肽组分析表明,三种SCO衍生的肽富集,即胸腺素β4,胸腺素β10和NP24,并将其重新引入SCO启动的脑室心室,主要救出了发育缺陷。一起,这些数据确定了SCO在大脑发育中的关键作用。
语义细分是执行场景理解的有效方法。最近,3D鸟视图(BEV)空间中的细分已被驱动策略直接使用。但是,在商用车中使用的环绕式鱼眼摄像机的BEV细分工作有限。由于此任务没有现实世界的公共数据集,并且现有的合成数据集由于遮挡而无法处理Amodal区域,因此我们使用Cognata Simulator创建一个合成数据集,其中包括各种道路类型,天气和照明条件。我们将BEV细分概括为使用任何凸轮模型;这对于混合不同的相机很有用。我们通过在Fisheye图像上应用圆柱整流并使用基于标准LSS的BEV分割模型来实现基线。我们证明,我们可以在没有不明显的情况下实现更好的性能,这具有增加的运行时效应,这是由于预处理,视野和重新采样的伪像而导致的。此外,我们引入了一种可学习的bev池层策略,对鱼眼摄像机更有效。我们以遮挡推理模块来探讨该模型,这对于估计BEV空间至关重要。fisheyebevseg的定性 - 在视频中展示了https://youtu.be/hftpwmabgs0。
医疗保健中的联邦学习(FL)患有非相同分布的(非IID)数据,从而影响模型收敛和性能。虽然现有的非IID问题解决方案通常不会量化联邦客户之间的非IID性质程度,但评估它可以改善培训经验和成果,尤其是在不熟悉数据集的现实世界中。本文提出了一种实用的非IID评估方法,用于医疗分割问题,强调了其在佛罗里达州的重要性。我们提出了一种简单而有效的解决方案,该解决方案利用了医疗图像的嵌入空间和对其元数据计算的统计测量结果。我们的方法是为医学成像而设计的,并集成到联邦平均值中,通过降低最遥远的客户的贡献,将其视为离群值,从而改善了模型的概括。此外,它通过引入客户的基于距离的聚类来增强模型个性化。据我们所知,这种方法是第一个使用基于距离的技术来为医学成像域内非IID问题提供实际解决方案的方法。此外,我们验证了三个公共FL成像放射学数据集的方法(Fets(Pati等人,2021),前列腺(Liu等人,2020b),(Liu等人,2020a)和Fed-Kits2019(Terrail等人,2022)))在各种放射学成像方案中证明其有效性。关键字:联合学习,非IID数据,个性化,概括,医学细分,医学成像。
4。连续监视和策略更新:一旦部署了零信托策略,MSS便提供了监视任何违反策略的功能并检测网络中删除的特定流量。这使管理员可以在有效的情况下更新零信托策略,但正在拒绝新服务,或者监视违反流量规则的特定端点。MSS规则支持“ Drop+Monitor”操作,该操作对开关进行编程以删除数据包,同时创建每个掉落的数据包的副本,并将其镜像到ZTX设备。设备分析每个镜像数据包和记录流量元数据(包括源,目标和L4服务),然后将其流式传输到CloudVision策略构建器,该策略构建器生成更新的策略建议。
电力销售收入包括代表EPG客户向电力市场出售电力的收入以及电力供应的收入。还包括EPGS费用和收入与提供客户可再生证书的市场路线相关。2。直接成本运输成本运输成本涵盖了所有系统费用(TNUOS和DUOS)以及平衡使用系统费用(BSUO)的所有使用。环境和社会义务为环境和社会义务成本支付与可再生能源义务(RO)相关的成本,关税(FIT)的饲料,可再生能源保证的原产能量(在这种情况下投降用于燃料混合披露目的),气候变化征税,差额(CFD)的差额(CFD),容量市场的收费和高电力分配成本(A AHAHEAHIDC)。其他直接成本这些成本与电力交易和不平衡成本以及RCRC有关,以及为客户可再生证书提供市场途径相关的成本。间接成本这些是运行EPG的费用,例如员工,财产和IT成本等。3。EBITDA/EBIT EBITDA,在利息,税收,折旧和摊销前的收益缩写,是净收入盈利能力的替代量度。它是通过将利息,税收,折旧和摊销费用添加到净收入中来计算的,并用于评估公司的盈利能力和财务绩效。ebit,在扣除所得税和利息费用之前的净利息和税收的缩写。ebit用于分析公司核心运营的绩效。
摘要:“分布式身份”是指使用分散的标识者(DID)和可验证的凭据(VC)从集中式身份系统的过渡,以实现安全和隐私的身份验证。具有分布式身份,对身份数据的控制将返回给用户,因此由于缺乏单点故障而使基于凭证的AEACK不可能。本研究评估了使用ZTA原理采用分布式身份时获得的安全性改进,尤其是关于分段网络中横向运动的安全性。还考虑了框架的实施规范,方法的优势和缺点,以及兼容性和可概括性问题。此外,该研究强调了隐私和法规依从性,包括一般数据保护法规(GDPR)和加利福尼亚州消费者数据隐私法(CCPA),分析了针对这些问题的潜在解决方案。该研究表明,采用分布式身份可以通过数量级来增强整体安全姿势,从而提供上下文和最小特权的授权和用户隐私。研究建议重新确定技术标准,扩大在实践中分布式身份的使用,并讨论其在当代数字安全环境中的应用。
摘要:“分布式身份”是指使用分散的标识者(DID)和可验证的凭据(VC)从集中式身份系统的过渡,以实现安全和隐私的身份验证。具有分布式身份,对身份数据的控制将返回给用户,因此由于缺乏单点故障而使基于凭证的AEACK不可能。本研究评估了使用ZTA原理采用分布式身份时获得的安全性改进,尤其是关于分段网络中横向运动的安全性。还考虑了框架的实施规范,方法的优势和缺点,以及兼容性和可概括性问题。此外,该研究强调了隐私和法规依从性,包括一般数据保护法规(GDPR)和加利福尼亚州消费者数据隐私法(CCPA),分析了针对这些问题的潜在解决方案。该研究表明,采用分布式身份可以通过数量级来增强整体安全姿势,从而提供上下文和最小特权的授权和用户隐私。研究建议重新确定技术标准,扩大在实践中分布式身份的使用,并讨论其在当代数字安全环境中的应用。