最小背景电流 电弧阳极加热系数 电阻加热系数 气体直径 喷嘴熔融金属直径 桥接电流脉冲频率 推力 电弧能量 热输入 短路能量 电流 电弧期间的电流 背景电流 峰值电流 短路期间的电流 恒定焊丝拉伸压力 电弧功率 雷诺数 焊丝电极横截面积 接触面积 时间 电流脉冲周期 电弧时间 背景电流持续时间 熔滴分离时间 峰值电流持续时间 短路时间 焊接电压 电弧期间的电压
我们开发了一个“半自动微分”框架,将现有的基于梯度的量子最优控制方法与自动微分相结合。该方法几乎可以优化任何可计算函数,并在两个开源 Julia 包 GRAPE.jl 和 Krotov.jl 中实现,它们是 QuantumControl.jl 框架的一部分。我们的方法基于根据传播状态、与目标状态的重叠或量子门正式重写优化函数。然后,链式法则的分析应用允许在计算梯度时分离时间传播和函数的评估。前者可以通过修改的葡萄方案非常高效地进行评估。后者通过自动微分来评估,但与时间传播相比,其复杂性大大降低。因此,我们的方法消除了通常与自动微分相关的高昂内存和运行时开销,并通过直接优化量子信息和量子计量的非解析函数,促进了量子控制的进一步发展,尤其是在开放量子系统中。我们说明并测试了半自动微分在通过共享传输线耦合的超导量子比特上完美纠缠量子门的优化中的应用。这包括对非解析门并发的首次直接优化。
由于其独特的光学和电子特性,垂直的范德华异质结构(VDWH)引起了光电应用的大量关注,例如光检测,光收获和光发射二极管。为了完全利用这些特性,了解跨VDWH的界面电荷转移(CT)和重组动力学至关重要。然而,界面能量和缺陷态对石墨烯转变金属二北核化金(GR-TMD)VDWH的界面CT和重组过程的影响仍在争论中。在这里,我们研究了具有不同化学成分(W,MO,S和SE)的GR-TMD VDWH中的界面CT动力学和可调的界面能量。We demonstrate, using ultrafast terahertz spectroscopy, that while the photo-induced electron transfer direction is universal with graphene donating electrons to TMDs, its efficiency is chalcogen-dependent: the CT efficiency of S atom-based vdWHs is 3–5 times higher than that of Se-based vdWHs thanks to the lower Schottky barrier present in S-based vdWHs.相比之下,从TMD到GR的电子反传递过程定义了电荷分离时间,它依赖金属依赖性,并由TMDS的中间隙缺陷水平支配:W过渡金属基于vDWH的电荷分离极为长,远超过1 ns,这比基于MO的VDWH远超过了PS Experation 10 s的基于MO的VDWH。与基于MO的TMD相比,这种差异可以追溯到基于W的TMD中报告的更深层次的中间隙缺陷,从而导致了从被困状态到石墨烯的后电子转移的变化能量。我们的结果阐明了界面能量学和缺陷的作用,通过在GR-TMD VDWH中定制TMD的化学组成和重组动态,这是优化光电设备的优化,尤其是在光电检测领域中。