bezero部门分类的轮廓3方法论3 1。简介4贝泽部门分类的概述4 BEZERO分类结构5 2。项目资格7 3。数据和数据源7 4。BeZero部门分类委员会7 5。Guidelines for BeZero Sector Classification 8 Project data collection 9 Sector classification by primary project activity 9 One project activity maps to one BeZero sub-sector 9 Project is applicable to multiple BeZero sub-sectors and provides quantitative data on credit issuance 9 Project activity matches with multiple BeZero sub-sectors and does not provide quantitative data on credit issuance 10 Review process 11 Appendix A: Sector Classification Definitions (Version 2.1) 12 10 Energy 12 20家庭设备13 30工业流程14 40基于自然的解决方案15 50工程碳清除16 60浪费17附录B:更新和审查18附录C:标准机构和相关注册表(非避免)19
24种类型的偏头痛类型诊断(偏头痛的典型光环,不含光环的偏头痛,不含偏头痛的典型光环,家族性偏瘫偏头痛,零星偏瘫偏头痛,基底型Aura,其他)
摘要:本研究探索了EEG信号中突出的信号,并提出了一种基于EEG信号识别情绪体验和心理状态的有效方法。首先,使用PCA将数据的维度从2K和1K降低到10和15,同时提高了性能。然后,针对构建基于EEG的识别方法的高质量训练数据不足的问题,提出了一种多生成器条件GAN,通过使用不同的生成器来生成覆盖实际数据更完整分布的高质量人工数据。最后,为了进行分类,引入了一种新的混合LSTM-SVM模型。所提出的混合网络在EEG情绪状态分类中获得了99.43%的整体准确率,在识别心理状态方面表现出色,准确率达到99.27%。所介绍的方法成功地结合了机器学习的两个突出目标:高精度和小特征尺寸,并展示了在未来分类任务中利用的巨大潜力。
mung豆种子在农业生产和食品加工中非常重要,但是由于它们的多样性和相似的外观,传统的分类方法都具有挑战性,以解决这一问题,这项研究提出了一种基于学习的方法。在这项研究中,基于深度学习模型MobilenetV2,提出了DMS块,并通过引入ECA块和Mish激活函数,即提出了高度优势网络模型,即HPMobileNet,提出,该模型被提出,该模型是在eLBIND中探索的,可用于分类和精确的图像识别。在这项研究中,收集了八种不同的绿豆种子,并通过阈值分割和图像增强技术获得了总共34,890张图像。hpmobilenet被用作主要网络模型,并通过在大规模的绿豆种子图像数据集上进行训练和精细调整,实现了有效的特征提取分类和识别能力。实验结果表明,HPMobileNet在Mung Bean Seed Grain Grain分类任务中表现出色,其准确性从87.40%提高到测试集的94.01%,并且与其他经典网络模型相比,结果表明,HPMobileNet可以达到最佳结果。此外,本研究还分析了学习率动态调整策略对模型的影响,并探讨了将来进一步优化和应用的潜力。因此,这项研究为开发绿豆种子分类和智能农业技术提供了有用的参考和经验基础。
全球气候变化(GCC)被定义为被认为是当前世纪最关键问题的过程,将影响世界上所有生物和生态系统。为了指定这种现象的潜在影响(似乎无法停止),首先有必要预测气候类型的变化。因此,目前的研究旨在定义2040年,2060年,2080年和2100的气候分类的转移(根据De Martonne,Erinç和Emberger气候类别),而Bursa是Türkiye的最大城市之一,根据SSPS 245和SSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPSPRESIOS的情况。因此,确定Bursa省的气候类型将发生重大变化,主要表现为转向干旱气候类型。建议在部门采取预防措施,以避免GCC的毁灭性影响。
生物学入侵正在影响全球生物多样性,生态系统和社会经济。海洋非土著物种(MNIS)可以通过人类活动(例如海上运输和粗心丢弃水族馆物种)引入。尽管为防止引入MNI的努力做出了重大努力,但仍会出现事件,包括紫s,甲壳类动物,沿海,anthozoans,bryozoans,bryozoans,sponges,acraalgae,acroalgae,seagrasses and Mangroves(Alidoost Salimi Salimi等,2021)。一旦MNI在接收者地区建立,控制和消除它们就成为一项艰巨的任务。早期对MNIS的认识可以提高早期反应的有效性,特别是在引入阶段,这对于减少MNIS的影响至关重要。因此,必须在成功建立新栖息地并对当地生物多样性构成威胁之前,制定可靠且具有成本效益的策略来对MNI的早期发现进行早期检测。公众在海洋保护中扮演着重要角色(EARP和LICONTI,2020年),例如检测和监视Acanthaster SPP的爆发和监测。(Dumas等,2020),以及管理侵入性狮子弯曲势力(Clements等,2021)。为了监视MNIS的存在,已采取行动来帮助公众熟悉并有效地认识这些物种,例如使用手表清单和指南。然而,由于海洋物种的生物多样性,准确识别标本
我们提出了一个新的机器学习基准,用于阅读任务分类,目的是在计算语言处理与认知神经科学之间的相交中推进脑电图和眼睛追踪研究。基准任务由一个跨主体分类组成,以区分两个阅读范式:正常阅读和特定于任务的读数。基准的数据基于苏黎世的认知语言处理语料库(ZUCO 2.0),该语料库提供了同时引人注目的视线和来自英语句子的自然阅读的EEG信号。培训数据集已公开可用,我们提出了新记录的隐藏测试集。我们为此任务提供多种可靠的基线方法,并讨论未来的改进。我们发布代码,并提供易于使用的界面,以使用随附的公共排行榜:www.zuco-benchmark.com评估新方法。
该项目旨在扩大偏远村庄的能源使用范围,从而改善受益社区在健康、教育和经济发展方面的发展成果。这将使可靠、清洁和负担得起的电力成为可能,从而改善农村社区的社会、经济和健康效益。向偏远社区提供电力将提高经济效益,通过消除电池和煤油等替代能源的费用来降低能源使用的相对成本,并将降低或消除依赖能源的企业的柴油发电机成本。该项目旨在支持该部增加农村社区电力使用的目标,探索各种替代可再生能源。预计该项目将为政府的可持续发展目标 (SDG) 做出贡献,解决多项发展举措。
癫痫发作类型识别对于癫痫患者的治疗和管理至关重要。然而,这是一个耗时耗力的困难过程。随着机器学习算法的进步,自动诊断系统有可能加速分类过程、提醒患者并支持医生做出快速准确的决策。在本文中,我们提出了一种新型多路径癫痫发作类型分类深度学习网络 (MP-SeizNet),它由卷积神经网络 (CNN) 和具有注意机制的双向长短期记忆神经网络 (Bi-LSTM) 组成。本研究的目的是仅使用脑电图 (EEG) 数据对特定类型的癫痫发作进行分类,包括复杂部分性、简单部分性、失神性、强直性和强直阵挛性癫痫发作。EEG 数据以两种不同的表示形式输入到我们提出的模型中。 CNN 接收从 EEG 信号中提取的小波特征,而 Bi-LSTM 接收原始 EEG 信号,以便我们的 MP-SeizNet 能够从癫痫发作数据的不同表示中进行联合学习,从而获得更准确的信息学习。我们利用最大的 EEG 癫痫数据库——天普大学医院 EEG 癫痫发作语料库 TUSZ v1.5.2 评估了所提出的 MP-SeizNet。我们使用三重交叉验证对不同患者数据评估了我们提出的模型,并使用五重交叉验证对癫痫发作数据评估了模型,结果分别获得了 87.6% 和 98.1% 的 F1 分数。
•和第三,如果不使用EPIC选项,我们将研究连接到EPIC系统的辅助系统和相关部门,例如PACS以及可能的放射学,实验室或药房系统。这些辅助系统是医院的合作伙伴组织,可能存在遗传的风险,或者是与Epic接触的内部医院申请。但是,今天可能无法将代理放置在设备上以启用保护,因此,仅使用Epic桥接的辅助系统与EPIC的接口,因此可以利用这些策略性接口限制访问权限。