bezero部门分类的轮廓3方法论3 1。简介4贝泽部门分类的概述4 BEZERO分类结构5 2。项目资格7 3。数据和数据源7 4。BeZero部门分类委员会7 5。Guidelines for BeZero Sector Classification 8 Project data collection 9 Sector classification by primary project activity 9 One project activity maps to one BeZero sub-sector 9 Project is applicable to multiple BeZero sub-sectors and provides quantitative data on credit issuance 9 Project activity matches with multiple BeZero sub-sectors and does not provide quantitative data on credit issuance 10 Review process 11 Appendix A: Sector Classification Definitions (Version 2.1) 12 10 Energy 12 20家庭设备13 30工业流程14 40基于自然的解决方案15 50工程碳清除16 60浪费17附录B:更新和审查18附录C:标准机构和相关注册表(非避免)19
- “心律失常检测” - “心电图心律失常” - “室性心律失常” - “室上性心律失常” - “早搏” - “心脏传导阻滞” - “心动过缓” - “心动过速” - “12 导联心电图” - “心脏信号处理” - “心电图中的深度学习” - “CNN” - “DNN” - “LSTM” - “Transformers” - “混合模型”
背景 尼泊尔中央银行遵循 2022/23 年货币政策,制定了绿色金融分类法,以鼓励国内绿色金融流动,促进绿色债券、气候风险报告和金融部门的资本需求。绿色金融分类法是对符合“绿色”或环境可持续条件的经济活动(资产、项目和部门)的分类。该分类旨在帮助金融部门参与者识别、跟踪和展示其绿色活动的资质,并将部门资本、资源和能力引导至尼泊尔的绿色、有弹性和包容性经济。 过程 尼泊尔中央银行 (NRB)、尼泊尔证券委员会 (SEBON)、尼泊尔保险管理局 (NIA)、财政部 (MoF) 和森林与环境部 (MoFE) 组成了一个治理机制(工作和指导委员会),以促进绿色金融分类法的制定过程。该过程收到了政策制定者、政府组织、金融机构、企业、项目开发商、国际组织、行业专家和民间社会机构代表的意见和反馈。 总体目标
在有限的预算下,获得固定的分类任务集的高质量结果是众包中的一个关键问题。应探索引入人工智能模型来补充该过程。然而,现有的方法很少直接解决这个问题;现有的方法是在如何使用嘈杂的众包数据训练人工智能模型的背景下提出的。本文提出了一种更直接的方法来解决在有限的预算下引入人工智能来提高人类工作者在固定数量任务中的结果的问题;我们将人工智能模型视为同事,并汇总人类和人工智能工作者的结果。提出的“人机协同 EM”(HAEM)算法扩展了 Dawid-Skene 模型,将 AI 模型视为同事,并明确计算它们的混淆矩阵以得出更高质量的聚合结果。我们进行了大量的实验,并将 HAEM 与两种方法(MBEM 和 Dawid-Skene 模型)进行了比较。我们发现,在大多数情况下,基于 AI 的 HAEM 比 Dawid-Skene 模型表现出更好的性能,并且当 AI 模型性能不佳时,它表现出比 MBEM 更好的性能。
文本对图像(T2I)生成模型最近成为一种强大的工具,可以创建照片现实的图像并引起多种应用。然而,将T2i模型的有效整合到基本图像分类任务中仍然是一个悬而未决的问题。促进图像锁骨表现的一种普遍的策略是通过使用T2I模型生成的合成图像来增强训练集。在这项研究中,我们仔细检查了当前发电和常规数据增强技术的缺点。我们的分析表明,这些方法努力产生既忠实的(就前景对象)而且针对领域概念的多样化(在背景上下文中)。为了应对这一挑战,我们引入了一种创新的类数据增强方法,称为diff-mix 1,该方法通过在类之间执行图像翻译来丰富数据集。我们的经验结果是,DIFF-MIX在信仰和多样性之间取得了更好的平衡,从而导致各种图像分类场景之间的性能显着提高,包括域名数据集的少量,常规和长尾分类。
反复试验在机器学习中起着重要作用。当模型发现其预测与实际数据集之间存在错误或差异时,它会尝试纠正其思维,使其预测接近实际情况。这个过程通常称为“训练模型”。实际数据集被分成训练集和验证集,通常按 90/10 的比例分配,其中 90% 用于训练,10% 用于验证其预测或错误率。这时,数据科学家可能会更改模型应该从中学习的特征,例如价格、产品、位置和/或模型的参数;这些是训练期间学习的训练数据集的属性。通常,参数是模型自行学习并在试图降低其预测错误率时自动调整的东西。
摘要在计算组织病理学领域,计算机辅助诊断系统对于获得各种疾病的患者诊断和有助于精确医学很重要。因此,已经报道了许多关于数字病理图像的自动分析方法的研究。在这项工作中,我们讨论了一种自动提取和疾病阶段分类方法多形胶质母细胞瘤(GBM)组织病理学图像。在本文中,我们使用深层卷发神经网络(深CNN)同时获取功能描述符和分类方案。此外,在这个充满挑战的分类问题中,与其他流行的CNN进行了客观和定量的比较。使用癌症基因组图像的胶质瘤图像的实验表明,我们的网络平均分类准确性为96:5%,而对于更高的交叉验证,其他网络的性能相似,较高的精度为98:0%。深CNN可以以高精度从GBM组织病理学图像中提取显着特征。总的来说,具有深CNN的组织病理学图像的GBM疾病阶段分类非常有前途,并且在大规模组织病理学图像数据的可用性中,深CNN非常适合解决这个挑战性问题。
最后一份。■ 杂志与游戏。插入内容包括 140 个计数器,用于耶拿 20 游戏 (40)、旃陀罗笈多 (18)、巴巴罗萨从基辅到罗斯托夫 (2)、1914 东方的黄昏 (3)、战列舰 (10)、难以捉摸的胜利 (10)、SPQR (4)、寒冬 (18)、PQ-17 (2)、为人民 II (18)、追求荣耀 (2) 和其他 9 个。;完整的耶拿 20 游戏;旃陀罗笈多变体;PQ-9/10 场景;SPQR 大象胜利场景;为人民海军卡变体效果;FAB 凸起设置援助与资产能力组合;战斗指挥官场景 103 和 110 场景;命令与颜色史诗古代场景卡。文章关于:为人民 10 周年变体规则; Hellenes 开发者笔记和策略;追求荣耀分析;SPQR 大象胜利场景,公元前 277 年;PQ-17 战略与战术;战斗指挥官斯大林格勒场景 35 分析;库图佐夫生存策略;荣耀之路和低地国家;飞行上校的科罗曼德尔战役 1758-9
为了解决高光谱遥感数据处理中遇到的同构问题,提高高光谱遥感数据在岩性信息提取与分类的精度,以岩石为研究对象,引入反向传播神经网络(BPNN),对高光谱图像数据进行归一化处理后,以岩性光谱与空间信息为特征提取目标,构建基于深度学习的岩性信息提取模型,并使用具体实例数据分析模型的性能。结果表明:基于深度学习的岩性信息提取与分类模型总体精度为90.58%,Kappa系数为0.8676,能够准确区分岩体性质,与其他分析模型相比具有较好的性能。引入深度学习后,提出的BPNN模型与传统BPNN相比,识别精度提高了8.5%,Kappa系数提高了0.12。所提出的提取及分类模型可为高光谱岩矿分类提供一定的研究价值和实际意义。
1型糖尿病(T1D)是一种自身免疫性疾病,其特征是胰腺中产生胰岛素的B细胞。这种破坏会导致慢性高血糖,因此需要终身胰岛素治疗来管理血糖水平。通常在儿童和年轻人中被诊断出,T1D可以在任何年龄段发生。正在进行的研究旨在揭示T1D潜在的确切机制并开发潜在的干预措施。其中包括调节免疫系统,再生B细胞并创建高级胰岛素输送系统的努力。新兴疗法,例如闭环胰岛素泵,干细胞衍生的B细胞替代和疾病改良疗法(DMTS),为改善T1D患者的生活质量并有潜在地朝着治疗方向前进。目前,尚未批准用于第3阶段T1D的疾病改良疗法。在第3阶段中保留B -cell功能与更好的临床结局有关,包括较低的HBA1C和降低低血糖,神经病和视网膜病的风险。肿瘤坏死因子α(TNF-A)抑制剂在三阶段T1D患者的两项临床试验中,通过测量C肽来保存B细胞功能,证明了效率。然而,在T1D的关键试验中尚未评估TNF-A抑制剂。解决T1D中TNF-A抑制剂的有希望的临床发现,突破T1D召集了一个主要意见领导者(KOLS)的小组。研讨会