摘要。现实世界图像超分辨率(RISR)旨在从退化的低分辨率(LR)输入中重新结构高分辨率(HR)图像,以应对诸如模糊,噪声和压缩工件之类的挑战。与传统的超分辨率(SR)不同,该方法通过合成的下采样来典型地生成LR图像,而RISR则是现实世界中降级的复杂性。为了有效地应对RISR的复杂挑战,我们适应了无分类器指导(CFG),这是一种最初用于多级图像生成的技术。我们提出的方法,真实的SRGD(带有无分类器引导扩散的现实世界图像超分辨率),将RISR挑战分解为三个不同的子任务:盲图恢复(BIR),常规SR和RISR本身。然后,我们训练针对这些子任务量身定制的类别条件SR扩散模型,并使用CFG来增强现实世界中的超分辨率效果。我们的经验结果表明,实际SRGD超过了定量指标和定性评估中的现有最新方法,如用户研究所证明的那样。此外,我们的方法在
摘要。量子计算机机器学习的最新进展主要得益于两项发现。将特征映射到指数级大的希尔伯特空间中使它们线性可分——量子电路仅执行线性运算。参数移位规则允许在量子硬件上轻松计算目标函数梯度——然后可以使用经典优化器来找到其最小值。这使我们能够构建一个二元变分量子分类器,它比经典分类器具有一些优势。在本文中,我们将这个想法扩展到构建多类分类器并将其应用于真实数据。介绍了一项涉及多个特征图和经典优化器以及参数化电路的不同重复的系统研究。在模拟环境和真实的 IBM 量子计算机上比较了模型的准确性。
背景 尼泊尔中央银行遵循 2022/23 年货币政策,制定了绿色金融分类法,以鼓励国内绿色金融流动,促进绿色债券、气候风险报告和金融部门的资本需求。绿色金融分类法是对符合“绿色”或环境可持续条件的经济活动(资产、项目和部门)的分类。该分类旨在帮助金融部门参与者识别、跟踪和展示其绿色活动的资质,并将部门资本、资源和能力引导至尼泊尔的绿色、有弹性和包容性经济。 过程 尼泊尔中央银行 (NRB)、尼泊尔证券委员会 (SEBON)、尼泊尔保险管理局 (NIA)、财政部 (MoF) 和森林与环境部 (MoFE) 组成了一个治理机制(工作和指导委员会),以促进绿色金融分类法的制定过程。该过程收到了政策制定者、政府组织、金融机构、企业、项目开发商、国际组织、行业专家和民间社会机构代表的意见和反馈。 总体目标
结构磁共振成像 (sMRI),尤其是纵向 sMRI,通常用于在阿尔茨海默病 (AD) 临床诊断期间监测和捕捉病情进展。然而,目前的方法忽视了 AD 的渐进性,大多依赖单一图像来识别 AD。在本文中,我们考虑利用受试者的纵向 MRI 进行 AD 分类的问题。为了解决学习纵向 3D MRI 时缺失数据、数据需求和随时间发生的细微变化等挑战,我们提出了一个新模型 LongFormer,它是一种混合 3D CNN 和变压器设计,可从图像和纵向流对中学习。我们的模型可以充分利用数据集中的所有图像,并有效地融合时空特征进行分类。我们在三个数据集(即 ADNI、OASIS 和 AIBL)上评估我们的模型,并将其与八种基线算法进行比较。我们提出的 LongFormer 在对来自所有三个公共数据集的 AD 和 NC 对象进行分类方面取得了最先进的性能。我们的源代码可从 https://github.com/Qybc/LongFormer 在线获取。
IX 木材及木制品;木炭;软木及软木制品;稻草、西班牙茅草或其他编织材料制品;篮筐及柳条制品 X 木浆或其他纤维状纤维素材料浆;回收(废料及碎片)纸或纸板;纸和纸板及其制品 Xl 纺织品及纺织品 Xll 鞋类、头饰、雨伞、太阳伞、手杖、马杖、鞭子、马鞭及其零件;加工好的羽毛及其制品;人造花、人发制品 Xlll 石料、石膏、水泥、石棉、云母或类似材料制品;陶瓷制品、玻璃和玻璃器皿 XIV 天然或养殖珍珠、宝石或半宝石、贵金属、包贵金属及其制品;照明珠宝;硬币 fi, f,::?, r"T xx'fxl",];: giffi,[::*, 电气设备及其零件;录音机和重放机,以及此类物品的零件和附件 XVll 车辆、航空器、船舶及相关运输设备 Xvllll 光学摄影、电影摄影、测量、检查、精密、医疗或外科仪器和设备、钟表;乐器;其零件和附件 ' XIX 武器和弹药;其零件和附件 XX 杂项制成品 XXI 艺术品、收藏品和古董 3.20If pscc 下商品分类使用的标准
海军部 海军作战部长办公室 2000 海军五角大楼 华盛顿特区 20350-2000 1221 Ser 00/436 16 十月 23 来自:军事人员计划和政策司 (N13) 主任 致:所有舰船和站点(不包括没有海军人员的海军陆战队实地收件人) 主题:2023 年 10 月颁布海军士兵人力和人员分类及职业标准手册 (NAVPERS 18068F) 第一卷和第二卷 参考:(a) OPNAVINST 1223.1D (b) NAVPERS 18068F 1.根据参考 (a),第卷参考文献 (b) 中的 I 卷是海军职业标准的官方手册,参考文献 (b) 中的第 II 卷是海军士兵分类的官方手册。此版本包含修订时可用的最新信息。2.该手册的目标是定义士兵所执行的工作,并根据所有指挥梯队的交互支持,正确及时地识别技术人员和要求。鼓励各指挥部根据参考文献 (b)(附录 A)提出建立、修订或撤销的建议。3.海军人事局 CD-ROM 将每半年分发一次。将活动添加到 CD-ROM 自动分发列表的请求应发送至:海军部海军人事司令部收件人:PERS-532D 5720 Integrity Drive Millington, TN 38055-0532,并包含以下相关信息:标准海军分发列表编号 (SNDL) 活动名称、缩写和 UIC 地址注意代码联系人及电话号码请求的 CD 数量及理由电子邮件地址更正至:BUPERSWEB/CD@navy.mil
为了解决高光谱遥感数据处理中遇到的同构问题,提高高光谱遥感数据在岩性信息提取与分类的精度,以岩石为研究对象,引入反向传播神经网络(BPNN),对高光谱图像数据进行归一化处理后,以岩性光谱与空间信息为特征提取目标,构建基于深度学习的岩性信息提取模型,并使用具体实例数据分析模型的性能。结果表明:基于深度学习的岩性信息提取与分类模型总体精度为90.58%,Kappa系数为0.8676,能够准确区分岩体性质,与其他分析模型相比具有较好的性能。引入深度学习后,提出的BPNN模型与传统BPNN相比,识别精度提高了8.5%,Kappa系数提高了0.12。所提出的提取及分类模型可为高光谱岩矿分类提供一定的研究价值和实际意义。
高光谱图像 (HSI) 分类旨在为每个像素分配一个唯一标签,以识别不同土地覆盖的类别。现有的 HSI 深度学习模型通常采用传统学习范式。作为新兴机器,量子计算机在嘈杂的中尺度量子 (NISQ) 时代受到限制。量子理论为设计深度学习模型提供了一种新的范式。受量子电路 (QC) 模型的启发,我们提出了一种受量子启发的光谱空间网络 (QSSN) 用于 HSI 特征提取。所提出的 QSSN 由相位预测模块 (PPM) 和受量子理论启发的类测量融合模块 (MFM) 组成,以动态融合光谱和空间信息。具体而言,QSSN 使用量子表示来表示 HSI 长方体,并使用 MFM 提取联合光谱空间特征。量子表示中使用了 HSI 长方体及其由 PPM 预测的相位。使用 QSSN 作为构建块,我们进一步提出了一种端到端的量子启发式光谱空间金字塔网络 (QSSPN),用于 HSI 特征提取和分类。在这个金字塔框架中,QSSPN 通过级联 QSSN 块逐步学习特征表示,并使用 softmax 分类器进行分类。这是首次尝试将量子理论引入 HSI 处理模型设计。在三个 HSI 数据集上进行了大量实验,以验证所提出的 QSSPN 框架相对于最新方法的优越性。
摘要:本研究探索了EEG信号中突出的信号,并提出了一种基于EEG信号识别情绪体验和心理状态的有效方法。首先,使用PCA将数据的维度从2K和1K降低到10和15,同时提高了性能。然后,针对构建基于EEG的识别方法的高质量训练数据不足的问题,提出了一种多生成器条件GAN,通过使用不同的生成器来生成覆盖实际数据更完整分布的高质量人工数据。最后,为了进行分类,引入了一种新的混合LSTM-SVM模型。所提出的混合网络在EEG情绪状态分类中获得了99.43%的整体准确率,在识别心理状态方面表现出色,准确率达到99.27%。所介绍的方法成功地结合了机器学习的两个突出目标:高精度和小特征尺寸,并展示了在未来分类任务中利用的巨大潜力。