文章历史记录:收到:2021年1月10日;修订:2021年2月12日;接受:2021年3月27日;在线发布:2021年4月28日摘要:情感是我们日常生活中必不可少的组成部分。尽管如此,脑部计算机界面(BCI)系统尚未达到解释情绪的必要水平。基于BCI框架的经编程的感觉确认是最后几十年来非凡询问的点。脑电图(EEG)信号是这些框架的重要资产之一。EEEG可能是通过头皮在脑波框架内从脑工作中记录的生理标志。利用脑电图信号的最大优势是它反映了真实的感觉,并且可以通过计算机框架有效地准备。一个虚拟数据集可以使用并填充脑电图数据,以计算和分类从脑电图信号生成的这些信号。此处使用的数据集是种子,可以通过称为K-Nearest(KNN)算法的机器学习技术来习惯它来系统化数据。实验性能通过种子分类期间的94.06%的分类值实现。这种提出的方法表明,通过脑电图信号,情绪识别如积极,中立和负面是可能的。
摘要 - 要在实际环境中见证量子优势,不仅在硬件级别上,而且在理论研究上都需要大量努力,以降低给定协议的计算成本。量子计算有可能显着增强现有的经典机器学习方法,并且已经提出了基于内核方法的二进制分类的几种量子算法。这些算法依赖于估计期望值,这又需要多次重复昂贵的量子数据编码过程。在这项工作中,我们明确计算获取固定成功概率所需的重复数量,并表明Hadamard检测和交换测试电路在量子电路参数方面实现了最佳差异。仅通过优化与数据相关的参数进行优化,可以进一步减少差异,因此重复的数量。我们还表明,无论数据的数量和尺寸如何,都可以通过单量测量进行基于内核的二进制分类。最后,我们表明,对于许多相关的噪声模型,可以可靠地执行分类,而无需纠正量子误差。我们的发现对于在有限的资源下设计量子分类实验非常有用,这是嘈杂的中间尺度量子时代的普遍挑战。
抽象机器学习分类模型学习输入作为特征和输出作为类的关系,以预测新给定输入的类。几项研究工作证明了机器学习算法的有效性,但最新的算法基于概率和逻辑的经典理论。量子力学(QM)已经在许多领域显示其有效性,研究人员提出了几个有趣的结果,这些结果无法通过经典理论获得。近年来,研究人员一直在尝试调查QM是否可以帮助改善经典的机器学习算法。认为,如果正确实施QM理论也可能会激发有效的算法。从这种灵感中,我们提出了量子启发的二进制分类器,该分类基于量子检测理论。我们使用文本语料库和图像库来探索我们提出的模型的效果。我们提出的模型在20个新闻组文本语料库中的几个主题(类别)方面优于最先进的模型。当使用MNIST手写图像数据集时,我们所提出的模型在召回方面优于所有基准。对于大多数类别而言,F量也更高,对于某些类别,精度也更高。我们提出的模型表明,使用量子检测理论可以实现二元分类效果。特别是,我们发现我们的量子启发的二进制分类器可以增加分类的精度,回忆和f量表,而最先进的方法不能。
最近,泥烤种植可以在经济上为农村人口提供帮助。然而,泥泞中的现有寄生虫可能会干扰泥泞的长寿。不幸的是,寄生虫已被确定住在数百种泥泞中,尤其是在马来西亚的Terengganu沿海水中。本研究通过使用机器学习技术根据其类别研究了寄生虫特征的初步识别。在这种情况下,我们使用了五个分类器,即逻辑回归(LR),K-Nearest邻居(KNN),高斯天真贝叶斯(GNB),支持向量机(SVM)和线性判别分析(LDA)。我们将这五个级别的fiers与寄生虫分类的最佳性能进行了比较。涉及三个阶段的分类过程。首先,将寄生虫分为两个类别(正常和异常),无论其腹侧类型如何。第二,分类性(女性或男性)和成熟度(成熟或不成熟)。最后,我们比较了五个分类器以识别寄生虫的物种。实验结果表明,GNB和LDA是在泥蟹属scylla内对根茎寄生虫进行初始分类的最有效的分类器。
尽管大脑计算机界面(BCI)领域的进步,但由于其不可靠,目前使用唯一的脑电图(EEG)信号来控制步行康复设备的临床环境中目前不可行。混合界面(HHMIS)代表了提高单信号方法性能的最新解决方案。这些是结合多个人机界面的分类方法,通常包括至少一个BCI与其他生物信号,例如肌电图(EMG)。但是,它们用于解码步态活动的使用仍然有限。在这项工作中,我们提出和评估了混合人机界面(HHMI),以从EEG和EMG信号的贝叶斯融合中解释双腿的步行阶段。即使在暂时或永久(例如弱点)暂时损害了肌肉活动的可靠性(例如疲劳)或永久性的(例如疲劳),即使肌肉活动的可靠性受到暂时损害(例如疲劳),也可以通过提供较高和稳定的性能来超过其单个信号对应。的确,杂种方法在临时EMG改变后显示了分类性能的平稳降解,而EMG分类器的精度为30%,其精度的75%以上,其性能降低了精度的60%。EEG和EMG信息的融合有助于在EMG降解的永久性水平下独立地对每个步态阶段保持稳定的识别率。根据我们的研究和文献发现,我们建议使用混合界面的使用可能是增强技术在临床应用和实验室环境外恢复或协助更广泛患者人群的技术的可用性的关键。
1 CAS关键行为科学,心理学研究所,中国北京; 2中国科学院心理学系,中国北京; 3中国北京的北京语言与文化大学认知科学中心; 4上海上海神经外科临床中心Fudan大学神经外科医院神经外科系; 5中国杭州大学医学院第一附属医院放射学系; 6国际大数据抑郁症研究中心(IBRCD),中国科学院心理学研究所,中国北京; 7中国科学院心理学研究所,中国北京的磁共振成像研究中心。 *电子邮件:ycg.yan@gmail.com。 **准备本文的数据是从阿尔茨海默氏病神经影像倡议(ADNI)数据库(adni.loni.usc.edu)获得的。 因此,ADNI中的调查人员为ADNI和/或提供数据的设计和实施做出了贡献,但没有参与本报告的分析或撰写。 可以在:http://adni.loni.usc.edu/wp- content/uploads/how_to_apply/adni_acknowledgement_list.pdf上找到ADNI调查人员的完整列表。1 CAS关键行为科学,心理学研究所,中国北京; 2中国科学院心理学系,中国北京; 3中国北京的北京语言与文化大学认知科学中心; 4上海上海神经外科临床中心Fudan大学神经外科医院神经外科系; 5中国杭州大学医学院第一附属医院放射学系; 6国际大数据抑郁症研究中心(IBRCD),中国科学院心理学研究所,中国北京; 7中国科学院心理学研究所,中国北京的磁共振成像研究中心。*电子邮件:ycg.yan@gmail.com。**准备本文的数据是从阿尔茨海默氏病神经影像倡议(ADNI)数据库(adni.loni.usc.edu)获得的。因此,ADNI中的调查人员为ADNI和/或提供数据的设计和实施做出了贡献,但没有参与本报告的分析或撰写。可以在:http://adni.loni.usc.edu/wp- content/uploads/how_to_apply/adni_acknowledgement_list.pdf上找到ADNI调查人员的完整列表。
将计算科学纳入医学和生物学领域的最新趋势导致有关医学和实验信息的大量数据积累。数据挖掘在医疗保健领域的应用可以通过进行数据分析并从看似无关的大量收集数据中发现关系来早期预测患者状况及其行为。由于其使所有各方受益的能力,数据挖掘在医疗保健运营中的普及也越来越高。例如,该部门的数据挖掘应用有助于确保患者获得更实惠,更好的医疗服务,医生确定最佳实践和有效治疗,医疗保健公司对客户关系管理做出明智的决定,并发现医疗保险公司发现虐待和欺诈。尽管有这些有希望的趋势,但是,医疗保健交易产生的结果和庞大的数据量证明了大量且过于复杂,无法使用传统方法进行处理和分析。此外,从数据仓库中提取信息的常规机制并未确定所涉及的隐藏模式,因此在本研究中采用了一种新方法来对数据进行分类以预测患者的医疗状况。此外,在这项研究中,基于医学属性,使用机器学习算法作为分类器的医学属性来描述与大脑相关疾病严重程度的预测。这是通过利用从医疗数据仓库(DWE)获得的数据来实现的。简介使用提取,转换,负载(ETL)过程和在线分析处理(OLAP)方法用于特征提取,训练和测试数据。机器学习算法(例如人工神经网络(ANN)和支持向量机(SVM))用于生成优化的输入参数(权重和偏差),以选择最佳内核来对数据进行分类以进行进一步诊断。发现所提出的模型在鉴定疾病时提供了快速的响应时间和最小错误率。因此,建议的框架可用于预测患者的状况,并在医疗机构或组织中治疗疾病的治疗方面提供最佳决定。关键字:支持向量机(SVM),人工神经网络(ANN),ETL(提取,转换和负载)过程,机器学习,疾病严重性,数据仓库1。
[19] 分类器。基本上,此实现的目标是提高 DT 分类器的效率。此分类器的学习率为
脑震荡是全球关注的健康问题。尽管脑震荡发病率很高,但对这种弥漫性脑损伤的机制的全面了解仍然难以实现。然而,众所周知,脑震荡会导致严重的功能障碍;儿童和青少年受到的影响比成年人更大,恢复时间也更长;正在康复的人更容易遭受更多脑震荡,每次受伤都会增加长期神经和心理健康并发症的风险。目前,脑震荡管理面临两大挑战:没有客观的、临床认可的、基于大脑的方法来确定 (i) 运动员是否遭受了脑震荡,以及 (ii) 运动员何时康复。诊断基于临床测试和症状及其严重程度的自我报告。自我报告非常主观,症状只能间接反映潜在的脑损伤。在这里,我们介绍了一种基于深度学习的长短期记忆 (LSTM) 循环神经网络,该网络仅使用一段短暂(即 90 秒)的静息状态 EEG 数据样本作为输入,即可区分健康和急性脑震荡后青少年运动员。运动员在数据收集过程中既不需要执行特定任务,也不需要受到刺激,并且获取的 EEG 数据既没有经过过滤、清除伪影,也没有进行显式特征提取。LSTM 网络使用 27 名患有运动相关脑震荡的男性青少年运动员的数据进行训练和测试,以 35 名健康青少年运动员为基准。在严格测试期间,分类器始终以 > 90% 的准确率识别脑震荡,其整体中值曲线下面积 (AUC) 对应于 0.971。这是第一个仅依赖易于获取的静息状态 EEG 数据的高性能分类器实例。它是朝着开发一种易于使用、基于大脑的、在个体层面上自动进行脑震荡分类的方法迈出的关键一步。
为了识别癫痫患者的异常脑电图 (EEG) 信号,在本研究中,我们提出了一种基于联合分布自适应和流形正则化的在线选择性转移 TSK 模糊分类器。与大多数现有的转移分类器相比,我们的分类器有自己的特点:(1)来自源域的标记 EEG 时期不能准确表示目标域中的原始 EEG 时期。我们的分类器可以利用目标域中很少的校准数据来诱导目标预测函数。(2)联合分布自适应用于最小化源域和目标域之间的边缘分布距离和条件分布距离。(3)使用聚类技术选择源域,从而降低分类器的计算复杂度。我们根据波恩大学提供的原始 EEG 信号构建了六种传输场景来验证我们分类器的性能,并引入四个基线和一个传输支持向量机 (SVM) 进行基准研究。实验结果表明,我们的分类器获得了最佳性能并且对其参数不太敏感。