通过模仿类似大脑的认知并利用并行性,超维计算 (HDC) 分类器已成为实现高效设备推理的轻量级框架。尽管如此,它们有两个根本缺点——启发式训练过程和超高维度——导致推理精度不理想且模型尺寸过大,超出了资源受限严格的微型设备的能力。在本文中,我们解决了这些根本缺点并提出了一种低维计算 (LDC) 替代方案。具体而言,通过将我们的 LDC 分类器映射到等效神经网络,我们使用原则性训练方法优化我们的模型。最重要的是,我们可以提高推理精度,同时成功地将现有 HDC 模型的超高维度降低几个数量级(例如 8000 对 4/64)。我们通过考虑不同的数据集在微型设备上进行推理来进行实验以评估我们的 LDC 分类器,并且在 FPGA 平台上实现不同的模型以进行加速。结果表明,我们的 LDC 分类器比现有的受大脑启发的 HDC 模型具有压倒性优势,特别适合在微型设备上进行推理。
人工智能 (AI) 的情绪识别是一项具有挑战性的任务。已经进行了各种各样的研究,证明了音频、图像和脑电图 (EEG) 数据在自动情绪识别中的实用性。本文提出了一种新的自动情绪识别框架,该框架利用脑电图 (EEG) 信号。所提出的方法是轻量级的,它由四个主要阶段组成,包括:再处理阶段、特征提取阶段、特征降维阶段和分类阶段。在预处理阶段使用基于离散小波变换 (DWT) 的降噪方法,在此称为多尺度主成分分析 (MSPCA),其中使用 Symlets-4 滤波器进行降噪。可调 Q 小波变换 (TQWT) 用作特征提取器。使用六种不同的统计方法进行降维。在分类步骤中,旋转森林集成 (RFE) 分类器与不同的分类算法一起使用,例如 k-最近邻 (k-NN)、支持向量机 (SVM)、人工神经网络 (ANN)、随机森林 (RF) 和四种不同类型的决策树 (DT) 算法。所提出的框架使用 RFE + SVM 实现了超过 93% 的分类准确率。结果清楚地表明,所提出的基于 TQWT 和 RFE 的情感识别框架是使用 EEG 信号进行情感识别的有效方法。
[19] 分类器。基本上,此实现的目标是提高 DT 分类器的效率。此分类器的学习率为
背景:连续修改,次优的软件设计实践和严格的项目截止日期有助于代码气味的扩散。检测和重构这些代码气味对于维持复杂而必不可少的软件系统至关重要。忽略它们可能会导致未来的软件缺陷,使系统具有挑战性,并最终过时。监督的机器学习技术已成为无需专家知识或固定阈值值的代码气味分类的有价值的工具。可以通过有效的特征选择技术和优化超参数值来实现分类器性能的进一步增强。AIM:通过使用各种类型的元元素算法(包括群体智能,物理学,数学和基于生物的)等各种类型的元元素算法对多种机器学习分类器的性能度量进行改进。将其性能度量进行比较,以在代码气味检测的背景下找到最佳的元元素算法,并根据统计测试评估其影响。方法:本研究采用了十六种当代和鲁棒的元元素算法来优化两种机器学习算法的超参数:支持向量机(SVM)和k -near -tehermest邻居(K -NN)。无免费的午餐定理强调了一个应用程序中优化算法的成功可能不一定扩展到其他应用程序。因此,对这些算法进行了严格的比较分析,以确定最佳的代码气味检测解决方案。75%,100%和98。分别为57%。分别为57%。各种优化算法,包括算术,水母搜索,基于学生心理学,基于学生心理学,正弦余弦,Jaya,Jaya,crow Search,Dragon Fly Fly,Krill Herd,Multi-Forse,共生,花生,花授粉,基于学习的学习,基于学习,牵引力搜索,牵引力搜索和基于生物地理学的优化。结果:在优化的SVM的情况下,获得的最高准确性,AUC和F量值为98。非常明显的是,准确性和AUC的显着提高,达到32。22%和45。分别观察到11%。对于k -nn,最佳准确性,AUC和F量值的值在100%下都是完美的,准确性和ROC -AUC值值得注意的远足,相当于43。89%和40。 分别为83%。 结论:优化的SVM通过正弦余弦优化算法表现出卓越的性能,而K -NN则通过花朵优化算法达到其峰值性能。 统计分析强调了采用荟萃算法来优化机器学习分类器的实质性影响,从而大大提高了其性能。 优化的SVM在检测上帝类方面表现出色,而优化的K -NN在识别数据类方面特别有效。 这个创新89%和40。分别为83%。结论:优化的SVM通过正弦余弦优化算法表现出卓越的性能,而K -NN则通过花朵优化算法达到其峰值性能。统计分析强调了采用荟萃算法来优化机器学习分类器的实质性影响,从而大大提高了其性能。优化的SVM在检测上帝类方面表现出色,而优化的K -NN在识别数据类方面特别有效。这个创新
INTRODUCTION: MANET is an emerging technology that has gained traction in a variety of applications due to its ability to analyze large amounts of data in a short period of time.因此,这些系统正面临各种安全漏洞和恶意软件攻击。Therefore, it is essential to design an effective, proactive and accurate Intrusion Detection System (IDS) to mitigate these attacks present in the network.Most previous IDS faced challenges such as low detection accuracy, decreased efficiency in sensing novel forms of attacks, and a high false alarm rate.OBJECTIVES: To mitigate these concerns, the proposed model designed an efficient intrusion detection and prevention model using COOT optimization and a hybrid LSTM-KNN classifier for MANET to improve network security.METHODS: The proposed intrusion detection and prevention approach consist of four phases such as classifying normal node from attack node, predicting different types of attacks, finding the frequency of attack, and intrusion prevention mechanism.初始阶段是通过COOT优化完成的,以找到从正常节点识别攻击节点的最佳信任值。在第二阶段,引入了混合LSTM-KNN模型,以检测网络中各种攻击。第三阶段执行以对攻击的发生进行分类。结果:最后阶段旨在限制系统中存在的攻击节点的数量。The proposed method's effectiveness is validated by some metrics, which achieved 96 per cent accuracy, 98 per cent specificity, and 35 seconds of execution time.结论:该实验分析表明,提出的安全方法有效地减轻了MANET的恶意攻击。
在结核病肆虐的地区,缺乏训练有素的放射科医生来快速处理 CXR 一直是一个挑战,影响及时诊断和患者监测。结核病患者肺部注释图像的缺乏阻碍了将面向数据的算法应用于研究和临床实践的尝试。结核病门户计划数据库 (TBPP,https://TBPortals.niaid.nih.gov) 是一个全球合作项目,整理了大量最危险、难以治愈的耐药结核病 (DR-TB) 患者病例。TBPP 拥有 1,179 例 (83%) 耐药结核病患者病例,是一个独特的集合,非常适合作为深度学习分类器的试验场。截至 2019 年 1 月,TBPP 数据库包含 1,538 张 CXR,其中 346 张(22.5%)由放射科医生注释,104 张(6.7%)由肺科医生注释,剩下 1,088 张(70.7%)没有注释。Qure.ai qXR 人工智能自动 CXR 解释工具在 TBPP 数据库中 346 张放射科医生注释的 CXR 上进行了盲测。Qure.ai qXR 对空腔、结节、胸腔积液、肺门淋巴结肿大的 CXR 预测与人类专家注释成功匹配。此外,我们还测试了 12 个 Qure.ai 分类器,以确定它们是否与治疗成功率相关(治疗医生提供的信息)。发现十个描述符具有重要意义:异常 CXR(p = 0.0005)、胸腔积液(p = 0.048)、结节(p = 0.0004)、肺门淋巴结肿大(p = 0.0038)、空洞(p = 0.0002)、不透明度(p = 0.0006)、肺扩张(p = 0.0074)、实变(p = 0.0004)、结核病指标(p = < .0001)和纤维化(p = < .0001)。我们得出结论,应用全自动 Qure.ai CXR 分析工具可用于快速、准确、统一、大规模的 CXR 注释辅助,因为它即使对于未用于初始训练的 DR-TB 病例也表现良好。在 TBPP 等不同数据集上测试人工智能算法(包括机器学习和深度学习分类器)对于临床采用的医疗数据分析自动助手至关重要。
摘要。本研究提出使用变分量子分类器对小麦品种进行自动分类。在大型数据集上训练的模型将能够识别种子特征和品种成员之间的独特模式和关系。这将使农民和研究人员能够更准确地识别小麦品种,从而可以改善种植和作物管理过程。这种方法不仅符合优化农业生产的需要,而且符合使用先进技术实现农业部门精准和高效的背景。通过这项研究,预计小麦生产的质量和可持续性将得到改善,这对粮食安全和可持续农业发展至关重要。该问题的目标是根据种子特征对小麦品种进行分类。VQC 在训练数据集上进行训练,然后在测试数据集上进行评估。为了评估模型的性能,使用了各种指标,例如准确度、精确度、召回率、F1 分数和混淆矩阵。
背景:估计普通人群中精神分裂症的流行仍然是全球以及日本的挑战。很少有研究估计日本人口中的精神分裂症患病率,并且经常依靠医院的报告和自我报告的医师诊断或典型的精神分裂症症状。由于污名,洞察力差或受访者缺乏医疗保健的机会,这些方法可能会低估真正的患病率。为了解决这些问题,我们先前使用了来自大型日本基于日本的大型网络调查的数据开发了一个基于人工神经网络(ANN)基于精神分裂症分类模型(SZ分类器),以增强普通人群中精神分裂症病例识别的全面性。此外,我们还计划引入一项基于人群的调查,以收集一般信息和样本参与者,以匹配人口的人口结构,从而实现对日本精神分裂症患病率的精确估计。目的:本研究旨在通过将SZ分类器应用于日本人群的随机样本中来估计精神分裂症的流行。方法:我们随机选择了750名参与者的样本,其中年龄,性别和区域分布与日本基于日本的大规模调查中的日本人口结构相似。人口数据,与健康相关的背景,身体合并症,精神病合并症和社会合并症被收集并应用于SZ分类器,因为此信息也用于开发SZ分类器。本研究证明了能力通过SZ分类器检测到的阳性病例的比例计算了精神分裂症的原始患病率。通过排除假阳性病例和包括假阴性病例以确定精神分裂症的实际患病率,进一步完善了原油估计。结果:在750名参与者中,SZ分类器将62例分类为精神分裂症病例,导致日本普通人群的精神分裂症患病率为8.3%(95%CI 6.6%-10.1%)。在这62个案件中,假定有53个案件是假阳性,而3个案件被认为是假否定的。调整后,普通人群中精神分裂症的实际患病率估计为1.6%(95%CI 0.7%-2.5%)。结论:这种估计的患病率略高于先前的研究中报道的,这可能是由于更全面的疾病分类方法或相反的模型限制。
通过模仿类似大脑的认知并利用并行性,超维计算 (HDC) 分类器已成为实现高效设备推理的轻量级框架。尽管如此,它们有两个根本缺点——启发式训练过程和超高维度——导致推理精度不理想且模型尺寸过大,超出了资源受限严格的微型设备的能力。在本文中,我们解决了这些根本缺点并提出了一种低维计算 (LDC) 替代方案。具体而言,通过将我们的 LDC 分类器映射到等效神经网络,我们使用原则性训练方法优化我们的模型。最重要的是,我们可以提高推理精度,同时成功地将现有 HDC 模型的超高维度降低几个数量级(例如 8000 对 4/64)。我们通过考虑不同的数据集在微型设备上进行推理来进行实验以评估我们的 LDC 分类器,并且在 FPGA 平台上实现不同的模型以进行加速。结果表明,我们的 LDC 分类器比现有的受大脑启发的 HDC 模型具有压倒性优势,特别适合在微型设备上进行推理。
脑震荡是全球关注的健康问题。尽管脑震荡发病率很高,但对这种弥漫性脑损伤的机制的全面了解仍然难以实现。然而,众所周知,脑震荡会导致严重的功能障碍;儿童和青少年受到的影响比成年人更大,恢复时间也更长;正在康复的人更容易遭受更多脑震荡,每次受伤都会增加长期神经和心理健康并发症的风险。目前,脑震荡管理面临两大挑战:没有客观的、临床认可的、基于大脑的方法来确定 (i) 运动员是否遭受了脑震荡,以及 (ii) 运动员何时康复。诊断基于临床测试和症状及其严重程度的自我报告。自我报告非常主观,症状只能间接反映潜在的脑损伤。在这里,我们介绍了一种基于深度学习的长短期记忆 (LSTM) 循环神经网络,该网络仅使用一段短暂(即 90 秒)的静息状态 EEG 数据样本作为输入,即可区分健康和急性脑震荡后青少年运动员。运动员在数据收集过程中既不需要执行特定任务,也不需要受到刺激,并且获取的 EEG 数据既没有经过过滤、清除伪影,也没有进行显式特征提取。LSTM 网络使用 27 名患有运动相关脑震荡的男性青少年运动员的数据进行训练和测试,以 35 名健康青少年运动员为基准。在严格测试期间,分类器始终以 > 90% 的准确率识别脑震荡,其整体中值曲线下面积 (AUC) 对应于 0.971。这是第一个仅依赖易于获取的静息状态 EEG 数据的高性能分类器实例。它是朝着开发一种易于使用、基于大脑的、在个体层面上自动进行脑震荡分类的方法迈出的关键一步。