年龄是描述正常衰老轨迹的预期大脑解剖状态的重要变量。偏离规范性衰老轨迹的偏差可能会提供一些对神经系统疾病的见解。在神经影像学中,预测的脑年龄广泛用于分析不同的疾病。但是,仅使用大脑年龄差距信息(即,年代年龄和估计年龄之间的差异可能对疾病分类问题的信息不足。在本文中,我们建议通过使用结构磁共振成像估算大脑结构年龄来扩展全球大脑年龄的概念。为此,首先使用深度学习模型的合奏来估计3D老化图(即,体素的年龄估计)。然后,使用3D分割掩码来获得最终的大脑结构年龄。此生物标志物可以在几种情况下使用。首先,它可以准确地估计大脑年龄,以便在人群水平上检测异常。在这种情况下,我们的方法的表现优于几种最新方法。第二,可以使用大脑结构年龄来计算与每个大脑结构的正常老化过程的偏差。此功能可用于多疾病分类任务中,以在受试者级别进行准确的分歧诊断。最后,可以看到个体的大脑结构年龄偏差,从而提供了一些有关脑异常的见解,并在实际医学环境下帮助临床医生。
摘要:近几十年来,脑机接口 (BCI) 的研究变得更加民主,使用基于脑电图 (EEG) 的 BCI 的实验急剧增加。协议设计的多样性和对生理计算日益增长的兴趣要求同时改进 EEG 信号和生物信号(如皮肤电活动 (EDA)、心率 (HR) 或呼吸)的处理和分类。如果一些基于 EEG 的分析工具已经可用于许多在线 BCI 平台(例如 BCI2000 或 OpenViBE),那么在线使用算法之前,执行离线分析以设计、选择、调整、验证和测试算法仍然至关重要。此外,研究和比较这些算法通常需要编程、信号处理和机器学习方面的专业知识,而许多 BCI 研究人员来自其他背景,对这些技能的培训有限或没有培训。最后,现有的 BCI 工具箱专注于 EEG 和其他脑信号,但通常不包括其他生物信号的处理工具。因此,在本文中,我们描述了 BioPyC,这是一个免费、开源且易于使用的 Python 平台,用于离线 EEG 和生物信号处理和分类。基于直观且引导良好的图形界面,四个主要模块允许用户遵循 BCI 过程的标准步骤,而无需任何编程技能:(1)读取不同的神经生理信号数据格式,(2)过滤和表示 EEG 和生物信号,(3)对它们进行分类,以及(4)可视化并对结果进行统计测试。我们在四项研究中说明了 BioPyC 的使用,即根据 EEG 信号对心理任务、认知工作量、情绪和注意力状态进行分类。
摘要 - 物联网(IoT)是物理对象,汽车,家用电器以及与传感器,软件和连接集成的其他项目的净作品,可通过Internet收集和共享数据。物联网设备的快速扩散已经引起了一波新的安全挑战,特别是在恶意软件检测领域,这些挑战需要创新的解决方案。因此,这项研究的主要目的是开发一个先进的恶意软件检测系统,除了具有名为Chi-square的功能选择方法之外,还与自然语言处理技术同时利用了与自然语言处理技术一样。使用IOTPOT数据集对所提出的方法进行了测试,并将其与该领域的最新研究进行了比较,在该领域,它在准确性,F1分数,召回和精度方面的表现优于当前工作。此外,将提出的方法与基于时间的咨询进行了比较,并且在NLP和CHI-Square中表现出了出色的性能,而不是没有时间的咨询,这使其更适合于这种物联网系统限制的资源。我们还提供了提出的方法来促进透明度的代码。1。索引术语 - NLP,机器学习,恶意软件检测,卡方,功能选择
在医学领域,年代年龄被广泛用作描述人的指标。它描述了健康器官应遵循的参考曲线。与该参考的偏差可能与不同的因素有关,例如基因,环境,生活方式和疾病的相互作用1。为了衡量这种偏差,已经创建了生物年龄(BA)的概念。这是基于各种高级策略2,3,4的个人年龄的估计,并有望考虑上述所有因素。因此,相对于年龄,加速(或延迟的)衰老过程导致BA的较高(或较低)值。BA的分析可以与全身系统或特定器官相关联。全身评估方法通常使用非成像数据(例如,DNA甲基化模式5,蛋白质6),但经常难以解决单个器官之间衰老的变化。到此为止,Tian等人。最近提出了一种采用多模式脑成像,生理测量和血液表型来构建多机器人衰老网络8的新型方法。他们的研究揭示了器官衰老的异质性质,多机构老化网络可能有可能促进与年龄相关的发病率风险的个人早期鉴定。此外,针对特定器官的BA的调查也引起了极大的兴趣。le Goallec等。建议根据成像数据对肝脏和胰腺年龄进行预测,以改善腹部年龄9的估计。在另一项研究中,Mauer等人。 使用3D膝盖成像来估计年龄,并将其用于实现准确的多数分类(年龄在18岁以上)10。在另一项研究中,Mauer等人。使用3D膝盖成像来估计年龄,并将其用于实现准确的多数分类(年龄在18岁以上)10。
摘要 — 随着磁共振成像 (MRI) 等用于测量大脑活动的非侵入性技术的最新进展,通过图形信号处理 (GSP) 研究结构和功能性大脑网络已获得显著关注。GSP 是揭示大脑功能和结构之间相互作用的关键工具,能够分析由感兴趣区域之间的连接定义的图形——在此上下文中称为连接组。我们的工作代表了在这个方向上迈出的又一步,通过探索图形表示学习领域的监督对比学习方法。这种方法的主要目标是生成主题级别(即图形级别)的向量表示,将具有相同标签的主题聚集在一起,同时将具有不同标签的主题分开。这些连接组嵌入来自图神经网络编码器-解码器架构,该架构共同考虑了结构和功能连接。通过利用数据增强技术,所提出的框架在使用人类连接组计划数据的性别分类任务中实现了最先进的性能。更广泛地说,我们以连接组为中心的方法论的进步支持了使用 GSP 发现更多大脑功能的良好前景,并可能对理解神经退行性疾病的异质性以实现精准医疗和诊断产生影响。
抽象有效检测油泄漏对于最大程度地减少环境破坏至关重要。这项研究介绍了一种利用深度学习的新颖方法,特别是Yolov8体系结构,并增强了用于漏油检测的先进计算机视觉技术。通过细致的数据集策划和模型训练,Yolov8模型的总体准确性(R-评分)为0.531,平均平均精度(MAP)为0.549。的性能在不同的溢出类型上有所不同,该模型在区分漏油和自然特征方面表现出明显的准确性,分别达到了高达0.75和0.68的精度和召回率,以进行光泽检测。可视化(例如盒子丢失,班级损失和混乱矩阵)提供了对模型性能动态的见解,揭示了损失的稳定下降和对时期准确性的提高。在此数据集中,测量值是由安特卫普·布鲁日(Antwerp Bruges)港口执行的无人机测量。此外,实用的应用显示了该模型在检测图像和视频数据中各种漏油类型方面的多功能性,从而确认其在环境监测和灾难响应方案中实际部署的潜力。这项研究代表着朝着更有效的漏油事件检测的重大迈进,这有助于环境可持续性和弹性工作。
在本研究中,已经尝试使用机器学习(ML)方法将实验数据(ML)进行分类,以对几种焊接进行分类。在气钨电弧焊接过程(GTAW)过程中,已经开发了ML模型并将其馈送到几个传感器捕获的实验数据中。一方面,焊接参数(电压,电流,电线速度,焊接速度等)用于监视焊接过程中传递的控制能。另一方面,使用与图像处理算法结合的摄像机被用来捕获原位焊接池轮廓。还构建了一个数据库来存储,标签和订购所获得的信息。然后将此数据库用于ML模型的各种培训,验证和预测步骤。然后使用KNN分类算法对焊接配置进行分类,然后分析其效率(准确性,处理时间等)。表明,与ML结合使用的图像处理可以通过提取的特征来训练以预测焊接配置的分类。当前研究的最终观点是实现实时识别和修改焊接操作条件。
查找数据集的一组嵌套分区对于在不同尺度上发现相关结构很有用,并且经常处理与数据有关的方法。在本文中,我们引入了一种基于模型的分层聚类的一般两步方法。将集成的分类可能性标准视为目标函数,此工作适用于该数量可以处理的每个离散潜在变量模型(DLVM)。该方法的第一步涉及最大程度地提高相对于分区的标准。解决了通过贪婪的山坡攀岩启发式方法发现的已知局部最大最大最大最大值问题时,我们基于遗传算法引入了一种新的混合算法,该算法允许有效地探索解决方案的空间。所得算法小心地结合并合并了不同的解决方案,并允许簇数K的共同推断以及簇本身。从这个自然分区开始,该方法的第二步是基于自下而上的贪婪程序来提取簇的层次结构。在贝叶斯语境中,这是通过考虑dirichlet群集比例的先验参数α作为控制聚类粒度的正规化项来实现的。标准的新近似值被推导为α的对数线性函数,从而实现了合并决策标准的简单函数形式。第二步允许在更粗的尺度上探索聚类。将所提出的方法与现有的模拟和实际设置的策略进行了比较,结果表明其结果特别相关。本工作的参考实现可在论文1随附的r软件包贪婪中获得。
摘要 — 目的:完全性四肢瘫痪会使人失去手部功能。辅助技术可以提高自主性,但用户仍然需要符合人体工程学的界面来操作这些设备。尽管四肢瘫痪的人手臂瘫痪,但他们可能仍保留着残留的肩部运动。在这项研究中,我们探索了这些运动作为控制辅助设备的一种方式。方法:我们用一个惯性传感器捕捉肩部运动,并通过训练基于支持向量机的分类器,将这些信息解码为用户意图。结果:设置和训练过程只需几分钟,因此分类器可以是用户特定的。我们对 10 名身体健全和 2 名脊髓损伤参与者测试了该算法。平均分类准确率分别为 80% 和 84%。结论:提出的算法易于设置,操作完全自动化,所取得的结果与最先进的系统相当。意义:手部功能障碍人士使用的辅助设备在用户界面上存在局限性。我们的工作提出了一种新方法来克服这些限制,即对用户动作进行分类并将其解码为用户意图,所有这些都只需简单的设置和培训,无需手动调整。我们通过对最终用户的实验证明了它的可行性,其中包括完全四肢瘫痪、没有手部功能的人。