具有高拓扑保护的光子晶体波导的实现,可以防止缺陷引起的散射。应该通过通过低损失和反射的尖锐弯曲来利用引导来设计非常紧凑的设备。在这项工作中,我们使用山谷拓扑三角谐振器耦合到输入波导,以评估在尖锐弯曲或拆分器(如拆分器之类的路由元件)之间具有相反螺旋性的螺旋拓扑边缘模式之间的转换。为此,我们首先通过数值模拟在腔角处的向后散射或在输入波导和腔之间的分离器上的螺旋转换而传播的向后散射存在。我们显示了这种过程发生的证据,尤其是在尖锐的角落,从而导致传输最小值和分裂共振,否则不存在。为了评估与此效应相关的小耦合系数,然后引入了基于散射矩阵在分裂器和谐振器的角落的精确参数化的现象学模型。通过与数值模拟进行比较,我们能够量化尖锐的弯曲和分裂器处的螺旋度转换。最后,我们使用获得的现象学参数集与基于Sierpi´nski Triangle构造的分形型腔的完整数值模拟将模型的预测与完整的数值模拟进行比较。我们表明,该协议总体上是好的,但在最小的三角形组成的腔中显示出更多的差异。我们的结果表明,即使在免于几何和结构缺陷的系统中,在拐角,尖锐的弯曲和裂缝方面,螺旋性转化也不可以忽略不计。但是,可以通过一种现象学方法来实现更简单但预测的计算,从而可以模拟超出标准数值方法的非常大的设备,这对于光子设备的设计至关重要,这些光子设备通过电磁波的拓扑传导来收集紧凑性和低损失。
原子质波的干涉法是基础科学1-5的必不可少的工具,对于应用的量子传感器6-10。干涉仪尺度的敏感性随衍射物质波的动量分离而导致大动量传递束分裂器的发展11,12。然而,尽管进行了数十年的研究,但对于动量转移13,由于第一个原子衍射实验以来使用的结晶光栅仍然是无与伦比的。到目前为止,仅报道了亚原子颗粒的衍射,但从未针对原子。在这里,我们通过在正常入射率下通过单层石墨烯证明了氦气和氢原子在基尔洛克素伏元能的衍射,以回答这一百年历史的挑战。尽管原子的高动能和与石墨烯电子系统耦合,但我们观察到衍射模式具有多达八个相互晶格向量的相干散射。衍射是可能的,从而限制了动量转移到光栅上。我们的演示是Thomson和Reid 14,15的第一次传输实验的原子对方,从而解开了原子衍射中的新电位。我们希望我们的发现能够激发未知能源制度中的破坏性研究以及新的基于物质波的传感器的发展。
基于自我成像效应[1],多模式干涉仪(MMI)可以用作光束拆分器,这是光子积分电路的基本构建块。MMI与Y分支和方向耦合器相比,由于其定义明确的振幅,相位和出色的公差[2,3],提供了卓越的性能。因此,MMI在Mach-Zehnder干涉仪(MZIS)[4],分裂和组合器[5,6],极化束分裂器[7]中找到应用。与MMIS尺寸降低或性能提高有关的研究已发表[8-11]。最近,在SOI上使用MMI设备的次波光栅在内的设计表现出了巨大的承诺[12,13]。次波长光栅(SWGS)是光栅结构,它利用小于波长的光向音高[14],抑制衍射效应并表现出各向异性特征[12]。通过工程化各向异性折射率,SWG已在许多应用中使用,例如纤维芯片表面和边缘耦合器[15-17],微功能波导[18],镜片[19],波导cross [20],多路复用器[17,21,22],相位移动器[23]和Optical Shifters [23]和Optical Sheifters [23] [23] [24] [24] [24] [24]。使用这种元物质,SWG MMI设备的带宽已在SOI平台上显着扩展[12,13],这使包括波长二线二线器[25],宽带偏振器梁拆分器[26] [26]和双模式束分配器有益于广泛的应用[27]。砖SWG结构以减轻制造分辨率的要求[28,29]。在SOI平台旁边,其他CMOS兼容材料,例如氮化硅,氮化铝和硝酸锂引起了很多关注。氮化硅(Si 3 N 4)由于其超低损失[30],非线性特征[31],从400 nm到中红外[32]脱颖而出[31]。像SOI平台一样,人们对在硅硅平台内实现高性能MMI设备也非常感兴趣。在本文中,我们将SWG MMI理论从SOI平台扩展到其他集成的光子平台,专门针对300 nm厚的氮化硅平台。我们的目标是设计和优化具有较小脚印和宽操作的SWG MMI设备
