口服抗癌剂包括靶向疗法、化疗药物和免疫调节剂。靶向疗法针对的是癌症生长所需的特定分子,这些分子通常位于癌细胞内。化疗药物针对的是任何快速分裂的细胞,包括正常细胞和癌细胞。由于化疗药物无法区分癌细胞和正常细胞,它们也会损害正常的快速分裂细胞,如毛囊、口腔和血液中的细胞。这会导致血细胞计数低、口腔溃疡、恶心、呕吐、腹泻和脱发等副作用。相比之下,靶向疗法通常影响较少的正常细胞,因此这类副作用较少。免疫调节剂刺激或抑制免疫系统,也可能具有抗血管生成特性,这意味着它们会阻止癌细胞从血液中获取营养。
微管在真核细胞的增殖、运输、信号传导和迁移中发挥着多种关键作用。因此,已开发出多种微管结合剂,用于不同的目的,包括用作杀虫剂、抗寄生虫剂和抗癌剂。在哺乳动物细胞中,微管既存在于间期细胞中,也存在于分裂细胞中。在后者中,组成有丝分裂纺锤体的微管具有高度动态性,对治疗抑制剂极其敏感。这解释了为什么改变微管功能的化合物已被证明对癌症患者具有高度活性。50 多年前发现的长春花生物碱 1 和近 40 年前首次分离的紫杉烷类药物目前用于治疗多种适应症,包括实体瘤 2 3 和血液系统恶性肿瘤 。它们最常用于联合化疗方案,包括一些治愈性 4 – 6
具有自己的急性和长期毒性。化学治疗剂靶向并消除快速分裂的细胞,例如肿瘤细胞。但是,它们也可能影响健康组织中的分裂和非分裂细胞,并在治疗期间或治疗期间导致严重的不良毒性,并对患者的生活质量产生重大影响。因此,面对严重毒性的剂量调整和药物停用的需求可以抵消治疗性临床益处,这是根据国家癌症研究所(National Cancer Institute) - 不良事件的共同术语标准(NCI-CTCAE)量表进行评分。当前的研究工作集中在建立减轻和防止癌症治疗相关毒性的策略上。药物基因组协会研究是一种鉴定候选基因和途径的方法,该方法可能针对治疗和预防治疗相关的毒性。
育种过程中利用的自然遗传变异主要由减数分裂期间同源染色体之间的相互 DNA 交换(交叉,CO)来保证。CO 的形成发生在减数分裂染色体轴的背景下,减数分裂染色体轴是一种蛋白质结构,姐妹染色单体在减数分裂前期 I 期间沿着该结构排列成环状碱基阵列。在包括大麦 (Hordeum vulgare) 在内的植物中,严格的 CO 调控导致有限数量的 CO 偏向染色体末端,而大部分基因组(特别是间质染色体区域)在育种过程中保持未开发状态。因此,需要新的策略和工具来修改减数分裂重组结果。为了能够对(新的)减数分裂蛋白进行蛋白质组学鉴定,我们在拟南芥减数分裂细胞中使用基于 TurboID (TbID) 的邻近标记对两种减数分裂染色体轴相关蛋白 ASYNAPTIC1 (ASY1) 和 ASYNAPTIC3 (ASY3) 进行标记。在已鉴定的 39 种候选蛋白中,鉴定出大多数已知的轴相关蛋白和新蛋白。在突变体筛选后,我们鉴定出(至少)四种具有减数分裂突变表型的新候选蛋白。其中,一种候选蛋白被发现是联会复合体 (SC) 的一部分。如果没有它,SC 形成就会中断,交叉形成就会减少,而 CO 水平就会增加,CO 干扰几乎被消除。为了快速评估和研究大麦的减数分裂基因,我们在 Cas9 表达植物中建立了大麦条纹花叶病毒诱导的基因编辑 (BSMVIGE) 和基于多重晶体数字 PCR (dPCR) 的单花粉核基因分型。 BSMVIGE 能够分离出减数分裂基因缺陷的大麦植物,而无需稳定的遗传转化,而单花粉核基因分型能够在不增加分离后代群体的情况下高通量评估重组率。我们的装置应用于大麦中的各种减数分裂基因,表明大麦重组格局可以改变。总之,基于 TbID 的邻近标记能够识别减数分裂细胞等稀有细胞类型中的蛋白质邻近蛋白,而 BSMVIGE 与单花粉核基因分型相结合,能够快速解析大麦以及其他作物中的减数分裂基因功能。
CRISPR-CAS9基因组编辑具有有希望的遗传疾病和癌症的治疗潜力,但安全可能是一个问题。在这里,我们使用10倍链接的读取测序和光学基因组映射的整个基因组分析来询问编辑后的基因组完整性,并与四个父母细胞系相比。除了先前报道的大型结构杂物外,我们还确定了迄今为止出乎意料的大型大型染色体缺失(91.2和136 kb),在非典型的非同理偏离式位点,在两条编辑线中与SGRNA相似,在没有序列的情况下没有序列。由CRISPR-CAS9编辑在分裂细胞中引起的观察到的大结构变体可能会导致致病后果,从而限制CRISPR-CAS9编辑系统对疾病建模和基因治疗的有用性。在这项工作中,我们的整个基因组分析可以提供有价值的策略,以确保基因组编辑后的基因组完整性,以最大程度地降低研究和临床应用中意外影响的风险。
摘要在非分裂细胞(如神经元)中,大型DNA片段对标记内源性蛋白的有效敲入仍然尤其具有挑战性。,我们以T WO(TKIT)指南为基于CRISPR/CAS9的新方法开发了T ARGE,以高效且精确的基因组敲入。通过靶向非编码区域TKIT对indel突变具有抗性。我们证明了具有各种标签的内源性突触蛋白的TKIT标记,在小鼠原发性培养的神经元中的效率高达42%。在小鼠中利用子宫电穿孔或病毒注射,可以将AMPAR亚基标记为超超金霉素,从而可以使用两光子显微镜在体内可视化内源性AMPARS。我们进一步使用TKIT来评估内源性AMPAR的迁移率,并在光漂白后荧光回收率。最后,我们表明TKIT可用于标记大鼠神经元中的AMPAR,在另一种模型生物体中证明了精确的基因组编辑,并突出了TKIT作为可视化内源性蛋白质的方法的广泛潜力。
摘要:腺病毒作为基因传递工具的应用导致了高容量腺病毒载体(HC-AdV)的开发,这种载体也被称为辅助依赖型或“无肠型”。与前几代(E1/E3 缺失载体)相比,HC-AdV 保留了相关特征,例如遗传稳定性、体内转导效率高以及高滴度生产。更重要的是,HC-AdV 基因组中缺乏病毒编码序列,可将克隆容量扩大至 37 Kb,并允许转基因在非分裂细胞中长期保持游离状态。这些特性为基因补充和基因校正领域开辟了广泛的治疗机会,过去二十年来,这些领域已在临床前水平进行了探索。在此期间,生产方法已得到优化,以获得临床实施所需的产量、纯度和可靠性。更好地了解炎症反应并实施控制炎症反应的方法提高了这些载体的安全性。我们将回顾最重要的成就,这些成就将有趣的研究工具转变为可靠的载体平台,有助于克服基因治疗领域目前的局限性。
环化可以提高 RNA 的持久性,但缺乏简单且可扩展的方法来实现这一点。在这里,我们报告了两种有助于寻找环状 RNA (cRNA) 的方法:使用 II 组内含子通过体外环化开发的 cRNA,以及通过普遍表达的 RtcB 蛋白通过细胞内环化开发的 cRNA。我们还报告了简单的纯化方案,可实现高 cRNA 产量 (40-75%),同时保持低免疫反应。这些方法和方案促进了干细胞工程的广泛应用,以及通过锌指蛋白和 CRISPR-Cas9 实现强大的基因组和表观基因组靶向。值得注意的是,与心肌细胞和神经元中的线性加帽 RNA 相比,带有脑心肌炎内部核糖体进入的 cRNA 能够实现强大的表达和持久性,这突出了 cRNA 在这些非分裂细胞中的效用。我们还描述了通过以 cRNA 形式递送的去免疫 Cas9 进行基因组靶向,以及用于组合筛选去免疫蛋白质变体的远程多路复用蛋白质工程方法,该方法使 cRNA 递送蛋白质的表达持久性和免疫原性之间能够兼容。cRNA 工具集将有助于治疗学的研究和开发。
在其他几种情况下需要控制CAS9活动的控制。首先,长时间的CAS9活性是对原发性细胞和干细胞的遗传毒性,因为双链DNA断裂已被证明会诱导高水平的细胞凋亡,从而导致编辑的细胞数量较少,并且潜在的肿瘤症克隆的潜在选择[11,12]。第二,在种系编辑中,镶嵌物(例如,不同细胞中的基因型异质性)是由分裂细胞中的不均匀Cas9活性引起的,可以通过将Cas9的活性限制为狭窄的时间窗口[13,14]。第三,CAS9包装用于腺相关病毒(AAV)E介导的输送可能是有毒的,可以通过关闭CAS9来解决此限制[15]。最后,对CAS9的控制对于在多种情况下的基因驱动器中特别有用,包括控制超级孟德尔遗传的程度和致命特征的促进性[16]。小分子和光通常用于精确控制酶活性。在这里,我们回顾了对CRISPR E CAS技术的化学和光学控制的不同方法,重点是基本的分子机制,它们的优势和缺点以及他们提供的控制程度。
将大型 DNA 序列精确插入基因组的技术对于各种研究和治疗应用至关重要。大型丝氨酸重组酶 (LSR) 可以介导多千碱基 DNA 序列的直接、位点特异性基因组整合,而无需预先安装着陆垫,但目前的方法存在插入率低和脱靶活动率高的问题。在这里,我们提出了一个全面的工程路线图,用于联合优化 DNA 重组效率和特异性。我们结合定向进化、结构分析和计算模型来快速识别附加突变组合。我们通过供体 DNA 优化和 dCas9 融合进一步提高了性能,从而实现了同时招募目标和供体。顶级工程 LSR 变体在内源性人类基因座上实现了高达 53% 的整合效率和 97% 的全基因组特异性,并有效整合大型 DNA 货物(测试高达 12 kb),以在具有挑战性的细胞类型(包括非分裂细胞、人类胚胎干细胞和原代人类 T 细胞)中稳定表达。这种合理设计 DNA 重组酶的蓝图使得精确的基因组工程成为可能,而不会产生双链断裂。