图像切解分析检测数字图像中隐藏的数据,对于增强数字安全性至关重要。传统的切解方法通常依赖于大型预先标记的图像数据集,这些数据集很困难且昂贵。为了解决这个问题,本文介绍了一种创新的方法,该方法结合了积极的学习和非政策深度强化学习(DRL),以使用最小标记的数据来改善图像ste缩。主动学习允许模型智能选择应注释哪些未标记的图像,从而减少有效培训所需的标记数据量。传统的主动学习策略通常使用限制灵活性且不能很好地适应动态环境的静态选择方法。为了克服这一点,我们的方法结合了用于战略数据选择的非政策DRL。DRL中的非政策可以提高样本效率,并显着提高学习成果。我们还使用差分进化(DE)算法来微调模型的超参数,从而降低了其对不同设置的敏感性并确保更稳定的结果。我们对广泛的BossBase 1.01和BOWS-2数据集进行了测试,证明了该方法区分未更改和隐形图像的强大能力,在BossBase 1.01和BOSS-2数据集对BossBase 1.01和91.834%的平均F量表达到93.152%。总而言之,这项研究通过采用先进的图像切解分析来检测隐藏数据,从而增强了数字安全性,从而通过最小的标记数据显着提高了检测准确性。
摘要:对贸易成本的适当度量和汇总对于经济成果的决定因素(尤其是政策)的合理学术和政策分析至关重要。国际贸易行业在理论和经验方面都见证了新的发展,涉及将这种成本的测量和分解成可变成本,一方面是部分和固定的成本,并涉及部分和一般的均衡效应。The objectives and main contributions of this project are to offer guidance for proper measurement, aggregation, and decomposition of trade costs into fixed vs. variable and partial vs. general equilibrium costs across two broad dimensions, one including overall trade costs vs. policy measures vs. transportation costs vs. natural trade barriers vs. uncertainty and another one including geography vs. product vs. household income level vs. agent.
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
基于晶格的密码系统(Kiltz等,2018; Bos等,2018; Fouque等,2020)被选为NIST Quantum加密后(PQC)Standards(Alagic等,2022)。Lattice-based schemes, including the PQC standards, are often based on polynomial rings i.e., NTRU (Hoffstein et al., 1998; Fouque et al., 2020), Ring-LWE (Stehl´e et al., 2009; Lyubashevsky et al., 2010) and Module-LWE (Brak- erski et al., 2011; Langlois and Stehl´e, 2015年),以提高效率。离散的高斯概率分布(定义2.2)是晶格cryp-图表中的重要对象,更普遍地是晶格的数学效果。例如,对晶格问题的计算硬度的分析(Regev,2005; Micciancio和Regev,2007; Gentry等,2008; Peikert,2009; Brakerski等,2013)依赖于离散高斯人的有用特性。此外,许多基于高级晶格的Crypsystems,例如基于身份的加密(Gentry等,2008; Agrawal等,2010)和功能
摘要:碎屑的分解途径是宏观栖息地对“蓝色碳”天然碳固相的贡献的关键过程。使用异位分解室研究了3个东北大西洋冠层海带物种的厌氧分解。thallus零件(stipes,holdfast和叶片)Hyperborea,Saccharina latis-sima和L. digitata在温度控制的黑暗条件下仍在海水中孵育。难治性(RP),第一阶分解速率(K)和相关的半衰期(T 1/2)的cal cal- cal- cal- cal。在0、7、14和21 D中测量了在孵化水中测量的溶解有机和无机碳(分别是DOC和DIC),并在每个分解阶段确定热重为重量纤维纤维纤维。氧气耗尽发生在24小时内。发布的DOC是DIC的大约5倍。Holdfast材料产生了最多的DIC,而刀片材料则释放了最大数量的DOC。S. latissima发行的文档少于L. Hyperborea和L. digitata。在整个21 d孵育中,碎片的平均(SD)RP从0.46±0.05增加到0.50±0.04。S. latissima的整个RP最高。一阶分解速率,平均在3个海带物种上,给出了27.8±2.9 d的叶片片段的半衰期(t 1/2),(k = 0.025±0.002),而定位为113.2±21.1 d(k = 0.006±0.001)。该实验在早期分解过程中表达了宏观碳的命运,因此可以控制大量藻类的蓝色碳途径的过程,从而强调了不同物种和thallus部分的分解差异。
像物联网,社交媒体和AI一样多样化的技术的发展正在改变社会的结构。将传感器,机器人和无人机等设备连接到网络上,使农业和行业效率更高,而借鉴图像和视频的社交媒体的增长和传播使人们从事娱乐的方式多样化。尤其是,近年来,生成的AI一直在突飞猛进,不仅可以提高服务的绩效和效率,而且还在人类创造力上定义的领域上盖章。未来将无疑会看到许多不同的服务得到此类最新技术的支持。将这些新服务的混合和匹配也有望产生一个高度数字化的社会,这是一个“数字未来社会”,这将进一步丰富我们的生活。
微电网具有越来越多的关注,因为它们可以促进可再生能源的整合。为了充分利用微电网,制定并解决了优化问题以确定其最佳计划(即尺寸和能源管理)。但是,这些问题很复杂且耗时解决。在本文中,我们关注基于弯曲器算法的时间分解,以减少计算时间,同时仍然获得最佳解决方案。时间分解将初始问题划分为较小的时间间隔的子问题。这项工作的第一个原始性是将这种时间分解应用于混合企业线性问题的方法的主张,以实现微电网的最佳计划。第二个独创性是研究以下相关参数对基于Benders算法的时间分解时间计算时间的影响:问题的分解周期,问题的性质,整体时间范围和CPU的数量。此外,与以前的文献相反,我们提出的方法表现出计算时间减少。对于经过考虑的案例研究,它们的最高为5.6倍。我们的结果还突出了分解周期的存在,该分解周期最大化了性能。此外,我们发现时间分解特别有效,对于较大的时间范围的混合构成线性问题,并且可以使用超过16个CPU。提出的通用方法和我们的结果对研究人员和旨在在缩短计算时间内找到其微电网的最佳尺寸和运行的微电网项目持有人可能非常有用。
“这项工作的核心发现是体育博彩的目标是估计中位结果。重要的是,这与平均结果不同。“我是从统计观点来处理的,但也提供了来自NFL的样本数据的一些直观结果,这些数据可以由没有数学背景的人来消化。”
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by/4。0/。Creative Commons公共领域奉献豁免(http://创建ivecommons。Org/publi cdoma in/Zero/1。0/1。0/)适用于本文中提供的数据,除非在数据信用额度中另有说明。
解构木质素时的主要目标是实现有用的产品或中间体的高收益,同时使不良副产品的形成成立,事实证明这是具有挑战性的。11要实现木质素向低分子量化合物的高转化,因此必须打破C - C键。12,13,例如,还原性催化分数(RCF)在很大程度上切割了C-C键完整14,芳香族单体的产量限制为15-30%。可以通过在高温和高压下的催化来实现木质素中的C - C键,但成本相对高。这激发了对替代方法的探索。在先前的工作中,我们报告了一种在环境温度或接近木质素中断裂C - C键的替代方法。这种方法将硫化与芬顿化学的解构结合在一起。在芬顿反应中,Fe 2+与过氧化氢反应,产生Fe 3+和高效的羟基自由基。17 - 19个先前的工作表明,芬顿反应产生的羟基自由基有效地裂解C - C键在磺酸聚合物(如木质磺酸盐)中,20,21种磺化聚乙烯,22和聚苯乙烯硫酸盐。23 - 25通过将硫基团添加到固定铁中,将氧化量反应定位于底物,从而导致这些聚合物有效分解至低分子量产物。Fenton反应在环境温度和大气压下进行。与需要能源密集型过程和高压反应器的方法相比,这是一个优势。此外,由于芬顿反应发生在水中,少量生物相容性铁作为催化剂,因此在生物转化之前几乎不需要后期处理。可以通过调整反应条件和试剂量(铁和H 2 O 2)来控制芬顿反应中实现的解构程度。可以对低分子量产物产物进行广泛的解剖,但是在解构的程度与通过过度氧化对挥发性化合物(例如CO 2)损失的碳量之间存在贸易。过度氧化还通过更大的氧化剂H 2 O 2的消耗导致成本增加。在这里,我们探索了来自Poplar的木质素的解构,Poplar是一种相关的生物能源原料,与用离子液体过程产生的富含糖流相关的26 a a e er分离。27我们先前的工作后,我们首先将杨树木质素磺化。28接下来,我们使用Fenton反应将磺化的木质素解散,表明我们可以通过不同的试剂浓度来控制解结和重聚的程度。然后,我们探索了分解产物的生物学可用性,并证明了分解产物向喷射燃料前体Bisabolene的转化。这项工作的目标是在整个过程中展示原理证明,包括转换为产品。下面我们报告结果并讨论了几个想法,以提高过程中每个步骤的收率。