大型语言模型(LLMS)研究的加速度为评估生成的文本开辟了新的可能性。尽管LLM是可扩展和经济的评估者,但这些评估者的可靠性仍然不足。在法官将LLM的提示限制为单一用途以获得最终评估决定时,在元评估中进行了元评估。 然后,他们计算LLMS的输出和Human标签之间的一致性。 这缺乏理解LLM的评估能力的解释性。 鉴于这一挑战,我们提出了DNA-eval,它将评估过程分解为基于教学实践的分解和聚集阶段。 我们的实验表明,它不仅为LLMS评估的评估提供了一个更容易解释的窗口,而且还可以在各种元评估台上的不同LLM中改善高达39.6%的窗口。在元评估中进行了元评估。然后,他们计算LLMS的输出和Human标签之间的一致性。这缺乏理解LLM的评估能力的解释性。鉴于这一挑战,我们提出了DNA-eval,它将评估过程分解为基于教学实践的分解和聚集阶段。我们的实验表明,它不仅为LLMS评估的评估提供了一个更容易解释的窗口,而且还可以在各种元评估台上的不同LLM中改善高达39.6%的窗口。
自然杀伤 (NK) 细胞是人类先天免疫系统的重要组成部分,是宿主抵御感染、病毒和疾病的第一道防线。这些细胞负责快速应对各种病理挑战,例如病毒感染细胞和癌细胞 ( 1 – 3 )。NK 细胞受细胞表面受体的调节,这些受体与体内各种细胞表面的主要组织相容性复合体 I 类 (MHC-I) 分子相互作用 ( 4 )。这些受体又由杀伤细胞免疫球蛋白样受体 (KIR) 基因编码,该基因位于人类 19 号染色体上白细胞受体复合体 (LRC) 的 150kb 区域内,其表达和相互作用对于区分健康细胞和异常细胞至关重要。由于个体之间存在巨大的遗传多样性,KIR 基因导致个体之间出现各种各样的免疫反应,这也影响疾病易感性 ( 5 )。因此,KIR 基因属于高度多态性基因家族,因此包含大量存在于人类群体中的已知基因相(也称为等位基因,或在某些情况下称为基因型)( 6 )。重要的是,这种变异不仅限于编码区,还涵盖指导 KIR 基因表达的调控区。有人提出,这种巨大的遗传多样性可能源于不断进化的病毒带来的进化压力( 7 )。这种复杂的遗传结构意味着不到 2% 的无关个体具有相同的 KIR 基因型( 8 )。十七 (17) 个 KIR 基因根据其胞外免疫球蛋白样 (lg-like) 结构域(指定为 2D 或 3D)和其胞质尾的长度(标记为 L 表示长胞质尾,标记为 S 表示短胞质尾,标记为 P 表示假基因)命名。一般规则是,短尾 KIR 是激活受体,而长尾 KIR 是抑制受体。基于这些名称,KIR 基因可分为以下几类: (a) 六 (6) 个基因,具有两个结构域和长胞质尾巴( KIR2DL1 – KIR2DL5B ), (b) 五 (5) 个基因,具有两个结构域和一个短胞质尾巴( KIR2DS1 – KIR2DS5 ), (c) 三 (3) 个基因,具有三个结构域和长尾巴( KIR3DL1 – KIR3DL3 ), (d) 一 (1) 个 KIR3DS1 ,其特征是具有三个结构域和一个短尾巴,以及 (e) 两 (2) 个假基因( KIR2DP1 和 KIR3DP1 )1. 全区域 KIR 单倍型分为两类:组 B(具有 KIR2DL5 、 KIR2DS1 、 KIR2DS2 、 KIR2DS3 、 KIR2DS5 和 KIR3DS1 之一)和组 A(没有这些基因中的任何一个) ( 7 ) (图 1 )最后,单个基因等位基因的命名,大致遵循基因注释中使用的星号等位基因命名法( 9 , 10 ),其中每个等位基因被分配一个数字来表明其功能( 8 )。目前已知的 KIR 等位基因已在 IPD-KIR 数据库中进行了汇编和分类(11)。由于不同的 KIR 等位基因会导致不同的免疫反应,因此有必要对 KIR 基因进行精确的基因分型和分期,以更好地了解这些基因在免疫系统中的作用。一种经济有效的方法是使用高通量测序 (HTS) 技术,该技术已成功用于
皮质脊髓神经途径对于运动控制和移动执行至关重要,在人类中,通常使用并发的电解质学(EEG)和肌电图(EMG)录音来研究它。但是,当前捕获这些记录之间高级和上下文连接性的方法具有重要的局限性。在这里,我们基于密度比的正交分解来介绍统计依赖估计量的新应用,以模拟皮质和肌肉振荡之间的关系。我们的方法通过学习特征值,特征函数和密度比的投影空间从信号实现的实现,解决皮质 - 肌肉连接性皮质的可解释性,可伸缩性和局部时间依赖性来扩展。我们通过实验证明,从皮质肌肉连通性中学到的本征函数可以准确地对运动和受试者进行分类。此外,它们揭示了确认运动过程中特定脑电图通道激活的通道和时间依赖性。我们的代码可在https://github.com/bohu615/corticomuscular-eigen-coder上找到。
这项工作提出了一种快速的算法BM-Global,用于核总规化的凸和低级别基质优化问题。bm-Global效率通过低成本步骤来降低客观值,从而利用非概念但光滑的居民 - 蒙特利罗(BM)分解,而有效地逃脱了鞍点,并在saddle点上逃脱了鞍点,并以bm的态度来确保快速的核能速率,以确保快速的全局核能核能,以确保全局的核能范围,以确保全局的全局核能,以确保全局的核定速率,以确保界限的全局效率。在其上,多个近端梯度步骤。所提出的方法可以自适应地调整BM分解的等级,并可以通过多种识别工具在优化过程中自动确定BM分解问题的最佳等级。bm-Global因此,与现有矩阵 - 因子化方法相比,在参数调整上花费的时间少得多,这需要详尽的搜索才能查找此最佳等级。在现实世界中的大型建议系统,正规化内核估计和分子构象方面进行了广泛的实验,以确保BM-全球确实可以有效地呈现出潮汐的局部最小值,以使现有的BM的方法与状态级别相比,这是一个范围较高的核 - 核 - 核 - 核 - 核 - 核 - 核 - 核 - 核 - 核 - 核 - 核 - 核 - 核 - 核 - 核 - 核 - 核 - 核 - 核 - 核 - 核 - 核 - 核 - 均与核能的核能降低了,均匀的核能是 - 正规化程序。根据这项研究,我们在https://www.github.com/leepei/bm-global/上发布了拟议的BM-Global的开源包。
MTF DM将促进CMS,制造商和分配实体之间的数据交换,以支持谈判价格的有效和及时效果。同时,MTF PM将为制造商提供一项可选服务,以协助将其MFP退款转移到适当的分配实体。至关重要的是,分配实体只需要注册MTF DM即可。在加入MTF DM时,分配实体将指示他们是否喜欢以电子转移的资金转移形式接受MFP退款付款,这将是在注册时或纸质支票时进行分配实体的默认选择。由于参与MTF PM是制造商可选的,因此分配实体可以通过MTF PM或通过制造商建立的替代过程获得MFP退款。
抽象不平等的诊断准确性是基于AI的模型的广泛关注点。然而,当前的偏差表征是狭窄的,并且无法说明上游数据收集的系统偏见,从而将AI性能的不平等现象与偏见混合在一起,这是由于数据集本身的分布差异。此差距具有广泛的含义,导致降低偏见的策略无效。我们介绍了一种新颖的回顾性模型评估程序,该程序识别并表征了解释人口级诊断差异的受保护群体之间的分布差异的贡献。在三个大规模的胸部射线照相数据集中,我们一直发现年龄和混淆图像属性(例如病理类型和大小)的分布差异有助于跨种族亚组的模型性能较差。通过系统地将观察到的不足诊断偏见归因于由于数据收购过程中的偏差或数据集偏见而引起的分布差异,我们提出了一种通用方法,用于解散不同类型的数据集偏置如何相互作用和化合物以造成可观的AI性能差异。我们的方法是可以采取行动的,可以帮助设计针对特定亚群的基础模型的目标干预措施,而不是忽略上游数据偏见不平等AI性能的系统贡献的方法。
种类 菌株 应用 参考 嗜热脂肪土芽孢杆菌 FMR12 洗衣机洗涤剂 (Abol-Fotouh 等人,2021) 苍白芽孢杆菌 - 废水处理 (Ktata 等人,2020) Kocuria flava ASU5 (MT919305) 生物柴油生产 (Najjar 等人,2021) 曼诺尔假单胞菌 LP2 油水解 (Komesli 等人,2021) 芽孢杆菌属VITL8 废物利用(Balaji 等人,2020 年)链霉菌属。 A3301 塑料的生物降解 (Panyachanakul 等人,2020 年) 空气芽孢杆菌 24 k 纺织品 (El-Fiky 等人,2022 年)
过去,计算系统生物学的研究更多地侧重于高级统计和数值优化技术的开发和应用,而较少关注对生物空间几何形状的理解。通过将生物实体表示为低维欧几里得空间中的点,最先进的药物-靶标相互作用 (DTI) 预测方法隐含地假设生物空间具有平坦的几何形状。相比之下,最近的理论研究表明,生物系统表现出具有高度聚类性的树状拓扑结构。因此,将生物系统嵌入平坦空间会导致生物对象之间距离的扭曲。在这里,我们提出了一种用于药物-靶标相互作用预测的新型矩阵分解方法,该方法使用双曲空间作为潜在生物空间。与经典的欧几里得方法相比,双曲矩阵分解表现出卓越的准确性,同时将嵌入维度降低了一个数量级。我们认为这是双曲几何支撑大型生物网络的额外证据。
摘要本文在设计科学研究(DSR)框架之后有助于正在进行的研究项目。该项目着重于建立一个概念框架,该概念框架通过模型和方法支持设计师和军事指挥官,旨在增强对军事指挥和控制系统(C2-Systems)的理解和评估。军事C2系统越来越依赖新兴技术,这突出了指导集成和发展的概念框架的需求。在本文中,我们提出了一种方法来完善目标模型,特别是在C2系统中的低级目标。总体目标是验证和完善现有的概念模型,尤其是与开发方面有关的概念模型。我们对低级目标进行结构化分析,以确定所设想框架的方法组件。通过建立这些连接,本文旨在研究现有方法和潜在方法差距的适用性。应在低级目标与以概念模型的形式概述的方法组件之间出现任何断开连接,这是对开发新方法组件的发展的倡导者。这些发现有助于对增强C2系统设计和实施策略的实用见解。文章Herby展示了4EM方法在理解和完善概念模型中的适用性。