• Praluent (alirocumab) • Repatha (evolocumab) PCSK9 inhibitors are approved by the Food and Drug Administration (FDA) as adjunctive therapy or alone for the lowering of low-density lipoprotein cholesterol (LDL-C) in adults with primary hyperlipidemia, including heterozygous familial hypercholesterolemia (HeFH).PCSK9抑制剂也获得了FDA批准用于纯合家族性高胆固醇血症(HOFH)的个体,并降低患有既定心血管疾病的成年人心血管事件的风险。repatha在10岁及以上患有HEFH或HOFH的个体中有儿科指示。PRALUENT具有儿科指示,可用于与HEFH 8岁及以上的个体辅助治疗。家族性高胆固醇血症是由遗传突变引起的遗传病,该疾病在早期引起高水平的LDL-C。家族性高胆固醇血症(FH)有两种类型。杂合FH(HEFH)是在200至250个人中大约有1个发生的更常见的类型。患有HEFH的个体有一个改变胆固醇调节基因的副本。纯合FH(HOFH)是罕见,更严重的形式,发生在大约300,000至400,000个个人中。患有HOFH的个体有两个改变胆固醇调节基因的副本。HOFH会导致LDL-C水平高于正常水平的六倍以上(例如,650-1,000 mg/dl)。通过对LDL-C分解代谢至关重要的一个基因中的一个或多个突变的遗传证实来确认家族性高胆固醇血症的确定性诊断。如果无法获得遗传测试,则可以通过基于LDL-C水平,临床表现和家族史的临床标准来确定诊断。在临床环境中,除了健康的生活方式干预措施外,他汀类药物被认为是一线药物疗法,在需要治疗异常胆固醇的个体中。其他脂质降低疗法应被视为需要额外胆固醇或不能忍受中等至高剂量的他汀类药物的个人的二线选择。2018年,美国心脏协会(AHA)/美国心脏病学院(ACC)发布了有关血液胆固醇管理的指南。在非常高风险的ASCVD中,该指南建议考虑到LDL-C保持大于或等于70 mg/dl时,请考虑在他汀类药物治疗中添加非他汀类药物。ezetimibe是第一个考虑添加到最大耐受性汀类药物疗法中的药物。PCSK9抑制剂在汀类药物疗法中与Ezetimibe结合使用,LDL-C保持大于或等于70 mg/dl,则可以考虑添加。2018 AHA/ACC指南建议使用大于或等于100 mg/dl的LDL-C阈值,以考虑在患有严重原发性高胆固醇血症的个体中添加非状态毒素。ezetimibe是第一个考虑增加治疗的非状态蛋白。PCSK9抑制剂在汀类药物疗法中与Ezetimibe结合使用LDL-C大于或等于100 mg/dl,可以考虑添加。在2022年,ACC发布了有关非状态蛋白疗法在LDL-C降低的作用的专家共识决策途径。ezetimibe和/或PCSK9单克隆抗体是第一个在非常高风险的ASCVD中,该途径建议当LDL-C保持大于或等于55 mg/dl时,考虑在他汀类药物治疗中添加非状态治疗。
• Praluent (alirocumab) • Repatha (evolocumab) PCSK9 inhibitors are approved by the Food and Drug Administration (FDA) as adjunctive therapy or alone for the lowering of low-density lipoprotein cholesterol (LDL-C) in adults with primary hyperlipidemia, including heterozygous familial hypercholesterolemia (HeFH).PCSK9抑制剂也获得了FDA批准用于纯合家族性高胆固醇血症(HOFH)的个体,并降低患有既定心血管疾病的成年人心血管事件的风险。repatha在10岁及以上患有HEFH或HOFH的个体中有儿科指示。PRALUENT具有儿科指示,可用于与HEFH 8岁及以上的个体辅助治疗。家族性高胆固醇血症是由遗传突变引起的遗传病,该疾病在早期引起高水平的LDL-C。家族性高胆固醇血症(FH)有两种类型。杂合FH(HEFH)是在200至250个人中大约有1个发生的更常见的类型。患有HEFH的个体有一个改变胆固醇调节基因的副本。纯合FH(HOFH)是罕见,更严重的形式,发生在大约300,000至400,000个个人中。患有HOFH的个体有两个改变胆固醇调节基因的副本。HOFH会导致LDL-C水平高于正常水平的六倍以上(例如,650-1,000 mg/dl)。通过对LDL-C分解代谢至关重要的一个基因中的一个或多个突变的遗传证实来确认家族性高胆固醇血症的确定性诊断。如果无法获得遗传测试,则可以通过基于LDL-C水平,临床表现和家族史的临床标准来确定诊断。在临床环境中,除了健康的生活方式干预措施外,他汀类药物被认为是一线药物疗法,在需要治疗异常胆固醇的个体中。其他脂质降低疗法应被视为需要额外胆固醇或不能忍受中等至高剂量的他汀类药物的个人的二线选择。2018年,美国心脏协会(AHA)/美国心脏病学院(ACC)发布了有关血液胆固醇管理的指南。在非常高风险的ASCVD中,该指南建议考虑到LDL-C保持大于或等于70 mg/dl时,请考虑在他汀类药物治疗中添加非他汀类药物。ezetimibe是第一个考虑添加到最大耐受性汀类药物疗法中的药物。PCSK9抑制剂在汀类药物疗法中与Ezetimibe结合使用,LDL-C保持大于或等于70 mg/dl,则可以考虑添加。2018 AHA/ACC指南建议使用大于或等于100 mg/dl的LDL-C阈值,以考虑在患有严重原发性高胆固醇血症的个体中添加非状态毒素。ezetimibe是第一个考虑增加治疗的非状态蛋白。PCSK9抑制剂在汀类药物疗法中与Ezetimibe结合使用LDL-C大于或等于100 mg/dl,可以考虑添加。在2022年,ACC发布了有关非状态蛋白疗法在LDL-C降低的作用的专家共识决策途径。ezetimibe和/或PCSK9单克隆抗体是第一个在非常高风险的ASCVD中,该途径建议当LDL-C保持大于或等于55 mg/dl时,考虑在他汀类药物治疗中添加非状态治疗。
这种观点的目的是强调使用胰高血糖素样肽-1受体激动剂(GLP-1RAS)在儿童和青少年中增加使用胰高血糖素样肽-1受体激动剂的潜在意外和不利后果。我们提出了一套特别适合NIH国家前进科学中心(NCATS)临床和转化科学奖(CTSA)中心网络,以减轻这些可能对儿科健康的威胁。我们的担心得到了加剧,因为最近的研究在儿童和青少年中证实了GLP-1RA在2型糖尿病治疗中的显着效果,并且作为饱足的药物,以前在成年人中已经证明的肥胖症。正如作者所指出的那样,在有影响力的新英格兰医学杂志[1,2]中发表了两项研究,这在很大程度上是因为目前被批准的针对儿科肥胖症和2型糖尿病的药物已被证明受到限制在其有效性上受到限制并受到不良事件的影响[3]。GLP-1RA的当前给药主要是肠胃外的,但是随着口服配方的发展进展[4],它们在儿童和青少年中的使用增加,无监督和/或医学监督是不可避免的。在关键的生长和发展期间,这些药物对儿童和青少年的可能产生的意外后果或不利影响几乎没有关注(表1)。我们关注的一个主要要素是,在儿童和青少年中,GLP-1RA可以诱导热量(能量)摄入的不平衡和不适当的减少。儿童和青少年的能量不仅在体育锻炼上花费,而且与成年人不同。能量摄入和能量消耗的平衡会影响整个生命周期的生长和健康。例如,在青春期的适当运动和饮食水平的情况下,骨矿化增加了,骨质疏松症和病理性骨折的风险在很大程度上减少了[5]。几乎所有偏离健康的体育锻炼水平和饮食都会对分解代谢和合成代谢介质产生不利影响。看似不同的疾病,例如正常体重但身体不活跃的青少年[6],那些在过度水平上运动的人以及肥胖的儿童和青少年[9] [9] [9] [9],所有这些都表现出有害的生长模式,并且通常会升高与心血管疾病风险增加相关的炎症。快速开发GLP-1RA的口服 - 管理表述以及青少年在冒险中的倾向[10]为潜在的虐待带来了完美的风暴。青春期标志着一个特别脆弱的时期,以发展自尊心和满足自己的外表。从2010年开始,美国的终生患病率数据表明,有2.7%的青少年在其一生中表现出饮食失调,而女性的可能性是男性的两倍以上[11]。自愿性侵蚀和泻药或食欲抑制剂的使用在青年中并不少见[12]。近年来,社交媒体的迅速扩张导致比以往任何时候都更多的年轻人接触到身体形象的理想和饮食文化。社交媒体的年轻用户患饮食失调的风险更高[13]。与Covid-19大流行有关的关闭进一步增强了GLP-1RA滥用的可能性,这使小儿肥胖症的顽固性流行病和较差的心呼毒性超级代谢适应性加剧了,尤其是在少数儿童和青少年中。我们小组的轶事临床经验表明,在小儿人群中已经有广泛的知识,这些知识是关于GLP-1RA的有效性作为饱腹药的有效性,这是帮助体重减轻的,而没有在流行媒体中证明的显然广泛使用[14]。伪造药物爆炸造成的健康威胁已得到充分记录[15],部分是由于通过互联网违法进入的一部分[16]。我们担心参加体重敏感活动的儿童和青少年,例如摔跤,健美运动,
在生物技术中,批处理培养物涉及在开始时将所有培养基组件放在反应堆中,除了大气气体和其他控制剂。这会随着时间的推移而创建一个不稳定的系统,而营养浓度不断变化。饲料批量文化通过无菌添加营养来修改这种修改,从而创建一个半开放的系统,其中液体培养体积随系统添加而增加。这种方法提高了生产率,产生更好的结果并允许更高的细胞密度。连续培养是一个连续的过程,在该过程中,添加营养并同时去除培养汤,由于平衡的进料和进料速率而保持恒定体积。比较这些方法揭示了关键差异:批处理文化使用封闭的系统,一开始就提供了所有营养,而Fed Batch则使用具有系统添加的半关闭系统。连续培养在开放系统中运行,并具有连续的营养添加和去除。过程的持续时间也有所不同,当产品形成时,批处理和批量停止,而连续文化通过不断删除产品来保持生产。微生物在每种方法中都经历不同的阶段:批处理和饲料批次经历滞后,原木,固定和死亡阶段,而连续培养物将微生物保持在滞后和对数阶段。这些方法之间的内部环境和养分量也有所不同,批处理具有不稳定的环境和恒定的营养量,饲料批量保持恒定的环境,养分量增加,并且连续培养保持环境和营养量稳定。4。•发酵过程在开始时将环境从外部转变为内部。•营养水平和条件会影响微生物的周转率,这在两者都保持良好时是最佳的。•控制微生物生长和所需产品在发酵过程中有所不同。•批处理培养物利用大型发酵罐,而饲料群则使用小型发酵罐,并且连续培养物使用小型发酵罐。•建立批处理文化很简单,而建立饲料批次或连续文化则需要更多的复杂性和精力。•产品的产量在发酵类型上有所不同,在某些过程中看到了高收率。•劳动需求根据发酵的类型而有所不同,其中一些人需要比其他人少的劳动力。•投资要求也有所不同,某些流程需要比其他流程更高的投资。•控制方法可以简单,快速或复杂,并且取决于所使用的发酵技术。•发酵主要用于生产二级产品,例如抗生素和重组蛋白。•最终产品是通过下游处理步骤获得的。综合生物技术(2017)Yang&Sha,“生物处理模式的初学者指南,美联储批次和连续发酵” doi:10.1016/b978-08-08-0888504-9.00112-4。本文概述了Fed Batch反应堆培养物,这是一种生物技术过程,在培养过程中,将一种或多种营养素喂给生物反应器,从而可以控制底物浓度。这种现象称为分解代谢物抑制。在控制营养水平会影响产品产量或生产力的情况下,该技术很有用。饲喂群培养特别有效。这些酸的形成称为细菌crabtree效应。分解代谢物抑制在微生物中提供了易于代谢能源(如葡萄糖)时,ATP浓度的增加会导致抑制酶的生物合成,从而导致能源源代谢较慢。许多参与分解代谢途径的酶都受到这种调节的约束。一种克服分解代谢物抑制的方法是饲喂群培养物,在该培养物中,葡萄糖浓度保持较低并受到生长的限制,从而使酶生物合成消除。青霉子素的青霉素发酵就是一个例子。5。使用需要特定养分的可营养性突变体在微生物过程中的,多余的养分供应会促进细胞的生长,但由于反馈抑制和终产产物抑制而抑制了代谢物的积累。 所需养分的饥饿减缓了细胞的生长和产生。 通过在有限的养分量上种植突变体,可以最大化所需的代谢物积累。 该技术用于工业氨基酸的生产,例如赖氨酸生产羟基氨基或苏氨酸/蛋氨酸/蛋氨酸的谷胱甘肽谷氨酰胺突变体。 6。 指定的化合物在培养液体中的存在形成共抑制剂,当其浓度保持较低时,允许持续的基因表达。 7。,多余的养分供应会促进细胞的生长,但由于反馈抑制和终产产物抑制而抑制了代谢物的积累。所需养分的饥饿减缓了细胞的生长和产生。 通过在有限的养分量上种植突变体,可以最大化所需的代谢物积累。 该技术用于工业氨基酸的生产,例如赖氨酸生产羟基氨基或苏氨酸/蛋氨酸/蛋氨酸的谷胱甘肽谷氨酰胺突变体。 6。 指定的化合物在培养液体中的存在形成共抑制剂,当其浓度保持较低时,允许持续的基因表达。 7。所需养分的饥饿减缓了细胞的生长和产生。通过在有限的养分量上种植突变体,可以最大化所需的代谢物积累。该技术用于工业氨基酸的生产,例如赖氨酸生产羟基氨基或苏氨酸/蛋氨酸/蛋氨酸的谷胱甘肽谷氨酰胺突变体。6。指定的化合物在培养液体中的存在形成共抑制剂,当其浓度保持较低时,允许持续的基因表达。7。用抑制启动子对基因的表达控制抑制启动子的基因的转录被DNA上的全抑制剂和操作员区域的组合抑制。美联储文化允许这样做。示例包括TRP启动子和Phoa启动子。延长运营时间,补充水分流失和降低培养汤粘度粘度的饲料批次策略用于工业生物过程中,以达到高细胞密度。通常,饲料溶液高度浓缩以避免生物反应器稀释。蛋白质已广泛研究其生长模式和局限性。该方法涉及以精确的速度将营养直接添加到培养物中,这有助于防止形成不良的副产品和氧气稀缺。该技术对于维持微生物繁殖的稳定环境至关重要。一种类型的Fed批次培养物,称为不断喂养的批量培养(CFBC),涉及在整个过程中以恒定的速率喂养限制生长的底物。该方法在数学上和实验上都得到了良好的建立,并且可以适用于固定容量或可变体积系统。在理想的情况下,细胞成倍地生长,通过按照这种生长成比例调整进料速率,可以维持细胞的特定生长速度,同时保持底物浓度恒定。这种方法允许对反应速率进行更多控制,并防止技术局限性,例如反应堆或氧转移困难中的冷却问题。指数填充的批量培养(EFBC)是另一种变化,涉及随着时间的时间呈指数增长的饲料率,以匹配细胞的指数生长速率。此外,它提供了代谢控制,以防止渗透作用,分解代谢产物抑制和形成不良的副产品。可以采用不同的策略来控制喂养过程中的生长,包括控制参数,例如氧气水平,葡萄糖浓度,pH,氨水水平和温度。这些方法对于维持微生物产生所需蛋白质的最佳条件至关重要,同时最大程度地减少了不需要的副产品的产生。大肠杆菌高细胞密度的生物层化方法
摘要 葡萄糖不耐症是一种常见的分解代谢疾病,可导致心血管疾病、肾衰竭和失明等严重后果。印度有近 7700 万人患有 2 型糖尿病,另有 2500 万人面临患上该病的风险。印度的糖尿病发病率居世界第二位。很多人仍然不知道他们面临的健康风险,这表明早期发现对于降低死亡率和改善患者健康有多么重要。所提出的方法处理 CNN、LSTM 和 SimpleRNN 模型如何很好地预测糖尿病的早期阶段。对于这项研究,我们收集了实时(主要来源)数据并进行了预处理,我们将其作为标准数据集发布,暂定名为“南印度糖尿病数据集 (SIDD)”。我们的实时数据集包含 806 个患者样本,其中 532 个为糖尿病患者样本,274 个为非糖尿病患者样本。我们主要考虑人口统计学和临床因素,例如年龄、性别和糖尿病症状。各种神经网络模型都对数据集进行了训练。这些模型的准确率分别为 CNN 96%、LSTM 95% 和 SimpleRNN 99.99%。我们根据 F1 分数、召回率和准确率评估了算法的性能。这表明现代深度学习模型能够熟练区分糖尿病患者和非糖尿病患者。 关键词:深度学习、糖尿病预测、CNN、LSTM、SimpleRNN、早期糖尿病 1. 简介 糖尿病是一种慢性疾病,通常被认为是难治性的,主要表现为无法调节血糖。在本研究中,我们收集了实时数据并生成了一个标准数据集,暂定名为“南印度糖尿病数据集 (SIDD)”,其中包括 806 名患者糖尿病因素,重点关注年龄、性别和糖尿病症状等人口统计学和临床因素。糖尿病可能会对身体的不同部位造成持久伤害,包括心脏、血管、眼睛和神经等身体其他部位。这种疾病是由胰岛素合成不足或细胞对胰岛素的抵抗引起的 [1]。这会导致身体细胞对葡萄糖的吸收不足,从而导致尿频、不明原因的体重减轻、过度口渴、饥饿感增加、伤口愈合延迟和头晕等症状。忽视糖尿病可能会导致心血管疾病、视网膜病变和肾衰竭等严重问题 [8]。糖尿病的发病率正在迅速上升,特别是在发展中国家 [4, 5, 6],它是导致肾病、中风、心肌梗塞、失明和截肢等疾病的重要因素。相当一部分糖尿病患者未得到诊断,因此当出现未治疗的问题时,医疗保健系统的压力会增加 [2, 11]。糖尿病是一个重大的全球公共卫生问题,带来巨大的情感、社会和经济负担 [9]。在印度 [3],糖尿病的经济影响尤其令人担忧,因为预计糖尿病在年轻人和老年人口中都会增加,给该国的医疗保健系统带来更大压力 [13]。世界卫生组织指出,每年有超过 4.22 亿人患有糖尿病,导致 160 万人死亡。最近的研究表明,糖尿病的患病率正在以比前几年更快的速度增长。印度目前是全球糖尿病患病率第二高的国家,有超过 7700 万人患有 2 型糖尿病,另有 2500 万人患有糖尿病前期 [15–17]。许多人仍然没有意识到他们所面临的健康危险,这凸显了早期识别以降低死亡率和改善患者治疗效果的必要性 [18]。葡萄糖不耐症是一种分解代谢障碍,会削弱身体将生命能量有效转化为能量的潜力。膳食提供葡萄糖,这是必需的能量来源,而胰腺则产生胰岛素,这是一种促进
Q11347:M。Lenz等。 短期Toll样受体9抑制作用导致心肌梗塞后左心室壁变薄。 ESC心力衰竭2023; 10(4):2375-2385代理:寡核苷酸2088;控制寡核苷酸载体:DNase;路线:没有说明;物种:老鼠;压力:Sprague-Dawley;泵:2001d;持续时间:1天; Alzet评论:剂量(66.667 ug/h);对照接收到带有盐水的控制ODN的MP;动物信息(男性; 10-12周大;重260-400 g); Toll样受体9拮抗剂Q11346:C。Lee等。 miR-25抑制通过恢复Kruppel样因子4表达来缓解心脏功能障碍和纤维化。 国际分子科学杂志2023; 24(15):代理:血管紧张素II载体:未陈述;路线:SC;物种:小鼠;应变:C57BL/6;泵:1002;持续时间:4周; Alzet评论:剂量(3毫克/千克/天);动物信息(男性; 8周大;重约20-25克);肽;心血管Q11021:W。Wang等。 复合Kushen注射通过抑制PI3K/AKT途径来减轻血管紧张素II介导的心力衰竭。 国际分子医学杂志2023; 51(3):代理:血管紧张素II载体:PBS;路线:SC;物种:小鼠;应变:C57BL/6;泵:2004;持续时间:3周; Alzet评论:剂量ANG II(2μg/kg/min);对控件接收到带车的MP;动物信息:男性,6周;重量,20-22 g;心血管; (心力衰竭)Q11016:P。Verdino等。 开发长效的松弛素类似物LY3540378,用于治疗慢性心力衰竭。 护理:单剂量的4 mg/kg,可以实现术后镇痛。 ;半衰期(第13页);心血管(慢性心力衰竭)Q11009:X. Tang等。Q11347:M。Lenz等。短期Toll样受体9抑制作用导致心肌梗塞后左心室壁变薄。 ESC心力衰竭2023; 10(4):2375-2385代理:寡核苷酸2088;控制寡核苷酸载体:DNase;路线:没有说明;物种:老鼠;压力:Sprague-Dawley;泵:2001d;持续时间:1天; Alzet评论:剂量(66.667 ug/h);对照接收到带有盐水的控制ODN的MP;动物信息(男性; 10-12周大;重260-400 g); Toll样受体9拮抗剂Q11346:C。Lee等。 miR-25抑制通过恢复Kruppel样因子4表达来缓解心脏功能障碍和纤维化。 国际分子科学杂志2023; 24(15):代理:血管紧张素II载体:未陈述;路线:SC;物种:小鼠;应变:C57BL/6;泵:1002;持续时间:4周; Alzet评论:剂量(3毫克/千克/天);动物信息(男性; 8周大;重约20-25克);肽;心血管Q11021:W。Wang等。 复合Kushen注射通过抑制PI3K/AKT途径来减轻血管紧张素II介导的心力衰竭。 国际分子医学杂志2023; 51(3):代理:血管紧张素II载体:PBS;路线:SC;物种:小鼠;应变:C57BL/6;泵:2004;持续时间:3周; Alzet评论:剂量ANG II(2μg/kg/min);对控件接收到带车的MP;动物信息:男性,6周;重量,20-22 g;心血管; (心力衰竭)Q11016:P。Verdino等。 开发长效的松弛素类似物LY3540378,用于治疗慢性心力衰竭。 护理:单剂量的4 mg/kg,可以实现术后镇痛。 ;半衰期(第13页);心血管(慢性心力衰竭)Q11009:X. Tang等。短期Toll样受体9抑制作用导致心肌梗塞后左心室壁变薄。ESC心力衰竭2023; 10(4):2375-2385代理:寡核苷酸2088;控制寡核苷酸载体:DNase;路线:没有说明;物种:老鼠;压力:Sprague-Dawley;泵:2001d;持续时间:1天; Alzet评论:剂量(66.667 ug/h);对照接收到带有盐水的控制ODN的MP;动物信息(男性; 10-12周大;重260-400 g); Toll样受体9拮抗剂Q11346:C。Lee等。miR-25抑制通过恢复Kruppel样因子4表达来缓解心脏功能障碍和纤维化。 国际分子科学杂志2023; 24(15):代理:血管紧张素II载体:未陈述;路线:SC;物种:小鼠;应变:C57BL/6;泵:1002;持续时间:4周; Alzet评论:剂量(3毫克/千克/天);动物信息(男性; 8周大;重约20-25克);肽;心血管Q11021:W。Wang等。 复合Kushen注射通过抑制PI3K/AKT途径来减轻血管紧张素II介导的心力衰竭。 国际分子医学杂志2023; 51(3):代理:血管紧张素II载体:PBS;路线:SC;物种:小鼠;应变:C57BL/6;泵:2004;持续时间:3周; Alzet评论:剂量ANG II(2μg/kg/min);对控件接收到带车的MP;动物信息:男性,6周;重量,20-22 g;心血管; (心力衰竭)Q11016:P。Verdino等。 开发长效的松弛素类似物LY3540378,用于治疗慢性心力衰竭。 护理:单剂量的4 mg/kg,可以实现术后镇痛。 ;半衰期(第13页);心血管(慢性心力衰竭)Q11009:X. Tang等。miR-25抑制通过恢复Kruppel样因子4表达来缓解心脏功能障碍和纤维化。国际分子科学杂志2023; 24(15):代理:血管紧张素II载体:未陈述;路线:SC;物种:小鼠;应变:C57BL/6;泵:1002;持续时间:4周; Alzet评论:剂量(3毫克/千克/天);动物信息(男性; 8周大;重约20-25克);肽;心血管Q11021:W。Wang等。 复合Kushen注射通过抑制PI3K/AKT途径来减轻血管紧张素II介导的心力衰竭。 国际分子医学杂志2023; 51(3):代理:血管紧张素II载体:PBS;路线:SC;物种:小鼠;应变:C57BL/6;泵:2004;持续时间:3周; Alzet评论:剂量ANG II(2μg/kg/min);对控件接收到带车的MP;动物信息:男性,6周;重量,20-22 g;心血管; (心力衰竭)Q11016:P。Verdino等。 开发长效的松弛素类似物LY3540378,用于治疗慢性心力衰竭。 护理:单剂量的4 mg/kg,可以实现术后镇痛。 ;半衰期(第13页);心血管(慢性心力衰竭)Q11009:X. Tang等。国际分子科学杂志2023; 24(15):代理:血管紧张素II载体:未陈述;路线:SC;物种:小鼠;应变:C57BL/6;泵:1002;持续时间:4周; Alzet评论:剂量(3毫克/千克/天);动物信息(男性; 8周大;重约20-25克);肽;心血管Q11021:W。Wang等。复合Kushen注射通过抑制PI3K/AKT途径来减轻血管紧张素II介导的心力衰竭。国际分子医学杂志2023; 51(3):代理:血管紧张素II载体:PBS;路线:SC;物种:小鼠;应变:C57BL/6;泵:2004;持续时间:3周; Alzet评论:剂量ANG II(2μg/kg/min);对控件接收到带车的MP;动物信息:男性,6周;重量,20-22 g;心血管; (心力衰竭)Q11016:P。Verdino等。 开发长效的松弛素类似物LY3540378,用于治疗慢性心力衰竭。 护理:单剂量的4 mg/kg,可以实现术后镇痛。 ;半衰期(第13页);心血管(慢性心力衰竭)Q11009:X. Tang等。国际分子医学杂志2023; 51(3):代理:血管紧张素II载体:PBS;路线:SC;物种:小鼠;应变:C57BL/6;泵:2004;持续时间:3周; Alzet评论:剂量ANG II(2μg/kg/min);对控件接收到带车的MP;动物信息:男性,6周;重量,20-22 g;心血管; (心力衰竭)Q11016:P。Verdino等。开发长效的松弛素类似物LY3540378,用于治疗慢性心力衰竭。护理:单剂量的4 mg/kg,可以实现术后镇痛。 ;半衰期(第13页);心血管(慢性心力衰竭)Q11009:X. Tang等。英国药理学学会2023; 180(15):1965-1980代理:异丙肾上腺素盐酸盐载体:PBS;抗坏血酸钠;路线:SC;物种:小鼠;应变:C57BL/6J;泵:1002;持续时间:14天; ALZET评论:异丙肾上腺素(15 mg/kg/day);对控件接收到带车的MP;动物信息:男性,11周大;发表OP。echinochrome可防止小鼠心肌梗塞后与硫化物分解代谢相关的慢性心力衰竭。海洋药物2023; 21(1):代理:echinochrome a车辆:盐水;路线:IP;物种:小鼠;应变:C57BL/6J;泵:没有说明;持续时间:7天; Alzet评论:剂量:( 0.2,0.6,2.0 mg/kg/day);剂量依赖;对控件接收到带车的MP;动物信息:9-12周大; ECH-A是一种抗氧化剂;心血管(缺血,心肌梗塞,心力衰竭)Q10998:W。Simonides等。在小鼠慢性肾上腺素能刺激引起的补偿和代偿性心脏肥大中,血浆和心脏左心室的甲状腺激素水平发散。代谢物2023; 13(308):代理:异丙肾上腺素;苯肾上腺素:水,无菌,蒸馏;抗坏血酸;路线:SC;物种:小鼠;应变:C57BL6/J-DIO3FL/FlmerCremer +/-(CD3KO-CS);泵:1007d; 1002;持续时间:7天; 14天; Alzet评论:剂量:30 mg/kg/d;使用0.1%的抗坏血酸;对控件接收到带车的MP;动物信息:12周;心血管; (心室肥大,心力衰竭)Q10996:S。Shen等。leon嘌呤通过抑制MAPK和NF-kappab途径减弱血管紧张素II诱导的心脏损伤和功能障碍。1C;心血管;治疗指示(高血压心力衰竭);Phytomedicine 2023;108(154519 Agents: Angiotensin II Vehicle: Not Stated; Route: SC; Species: Mice; Strain: C57BL/6; Pump: 1002; Duration: 4 weeks; ALZET Comments: Dose (1000 ng/kg/min); Controls received mp w/ vehicle; animal info: non-hypertensive; Blood pressure measured via Tail cuff; Blood pressure measurement (p.2)图