成熟的自噬体随后与溶酶体融合,将其内容物降解为单体,以供下游的合成代谢和分解代谢。基础自噬通过清除多余或受损的蛋白质和细胞器来维持细胞稳态,而自噬通量上调是细胞对营养缺乏和细胞毒性药物暴露的一种适应性反应。近年来,越来越明显的是,自噬上调在癌症的发展及其对治疗的反应中起着重要作用。6,7 许多类型的肿瘤——包括卵巢癌、8 胰腺癌、9 乳腺癌 10 和结肠癌 11——依赖于自噬的持续激活来维持在肿瘤微环境血管稀少、缺氧和营养缺乏的条件下的生长。化疗 12 和放疗 13 后自噬的激活已被确定为获得治疗耐药性的主要促成因素。 14
A2M的抗蛋白酶作用方式已得到很好的特征(1、4-6、8、9)。简要地,A2M分子由一对共价连接的二聚体组成,在结构的空心核中形成诱饵区域“笼”,该二聚体非常容易被蛋白酶裂解(1,6)。发生裂解时,A2M分子会立即进行构象重排,从而夹住蛋白酶,从而抑制蛋白水解活性并最终被肝脏对A2M蛋白酶复合物的清除率(4-6)。除了蛋白酶中和外,A2M还与促炎细胞因子结合,以减少软骨中细胞因子诱导的胶原酶的合成(2、3、5、8、9)。因此,A2M具有两个主要软骨的影响:与促炎细胞因子的结合,它们启动软骨降解过程和中和分解代谢酶的过程,这些酶驱动骨关节炎的发展(OA)。
摘要:鸟氨酸经钙化酶的缺乏症(OTCD)是尿素周期中最常见的遗传疾病,通常将其作为X连锁的隐性性状传播。OTC基因中的缺陷会导致尿素发生障碍,导致高症血症,这是脑损伤和死亡的直接原因。晚期OTCD患者可以从婴儿期到童年,青春期或成年后出现症状。OTCD成年人的临床表现在敏锐度上有所不同。临床症状可能会因代谢压力源或分解代谢状态的存在而加剧,或者由于对尿素的需求增加所致。迅速诊断和相关的生化和遗传研究允许快速引入正确的治疗,并防止长期并发症和死亡率。此叙述性评论概述了诊断和管理晚期OTCD患者的挑战。
摘要:自噬是一种高度保守的分解代谢过程,可由各种形式的细胞应激诱导,其调节作为癌症治疗方法具有相当大的潜力。本研究表明,二柠檬酮 B (DB) 是一种罕见的碳桥接桔霉素二聚体,可通过在晚期阻断自噬而发挥抗癌作用,而不会破坏 MCF7 乳腺癌和 MDA-MB-231 三阴性乳腺癌细胞中的溶酶体功能。此外,研究发现 DB 显著增强细胞内活性氧 (ROS) 的产生,并且 ROS 的清除随后会减弱自噬抑制。此外,DB 对 MCF7 和 MDA-MB-231 细胞的增殖具有显著的抑制作用,对细胞凋亡具有促进作用。与传统化疗药物联合使用时,DB 表现出比单独使用时更强的协同作用。总体而言,本研究的数据表明
目前,溶酶体被描述为高级细胞器,在细胞稳态中起着关键作用,并介导了各种生理过程,例如蛋白质降解和质膜修复。1,2个证据表明,溶酶体中水解酶的异常活性与疾病的发病机理,例如储存障碍,癌症,神经退行性疾病和心脏疾病。3 - 5,其中lyso- somes中的b-乳糖苷酶(b -gal)参与了糖结合物的分解代谢,其异常水平与原发性卵巢癌的发生和进展有关,使溶酶体的糖尿病癌症成为可靠的诊断和诊断的动力学诊断。6 - 10对实时途径中溶酶体中水解酶的现场监测将为溶酶体酶在疾病进展中的详细作用提供见解,并进一步有助于早期诊断和治疗策略的发展。11 - 13
分子氧(O 2)是一种通用电子受体,最终在所有后生动物的线粒体呼吸链中合成为ATP。因此,缺氧生物学已成为细胞进化,代谢和病理学的组织原理。缺氧诱导因子(HIF)介导肿瘤细胞,以产生一系列葡萄糖代谢适应,包括调节葡萄糖分解代谢,糖原代谢和葡萄糖对低氧的生物氧化。由于HIF可以调节癌细胞的能量代谢并促进癌细胞的存活,因此靶向HIF或HIF介导的代谢酶可能成为癌症的潜在治疗方法之一。在这篇综述中,我们总结了可以诱导肿瘤中低氧葡萄糖代谢的细胞重编程的既定且最近发现的自主分子机制,并探索了靶向治疗的机会。
仅部分探索了生物技术兴趣的微生物中基因组多样性的隐藏层,并且需要更深入的研究,即需要克服物种水平分辨率。CO 2固定菌群易于进行案例研究等评估。采用了实验室规模的trick流式反应器,成功实现了对人工沼气和富含硫的沼气的同时实现生物泛滥和脱硫化,并还实施了氧气SUP培养。在微量自我条件下,硫化氢去除效率为81%,甲烷含量为95%。甲烷杆菌 dtu45主要出现,其代谢功能与硫分解代谢中的社区范围动力学相关。 gamaproteobacteria sp。中涉及基因组进化。 dtu53,被确定为微量清除液的主要贡献者。 发现了硫化氢氧化途径中变体的阳性选择,并将氨基酸变体定位在硫化物的硫化物入口通道上:喹酮氧化还原酶。 氧气中的SUP填充应变选择是驱动微生物适应的主要机制,而不是物种优势的转移。 选择性压力确定了新菌株的出现,例如在伽马普罗杆菌中。 dtu53,提供了微生物组内功能冗余的深度证据。甲烷杆菌dtu45主要出现,其代谢功能与硫分解代谢中的社区范围动力学相关。gamaproteobacteria sp。中涉及基因组进化。dtu53,被确定为微量清除液的主要贡献者。发现了硫化氢氧化途径中变体的阳性选择,并将氨基酸变体定位在硫化物的硫化物入口通道上:喹酮氧化还原酶。氧气中的SUP填充应变选择是驱动微生物适应的主要机制,而不是物种优势的转移。选择性压力确定了新菌株的出现,例如在伽马普罗杆菌中。dtu53,提供了微生物组内功能冗余的深度证据。
电子邮件:larinhasmelo@gmail.com摘要高血糖危机是急性并发症,通常来自糖尿病(DM),与高血糖直接相关。是住院和医院环境中死亡的重要原因。这种危机可以通过糖尿病性乳胶(CAD)或高血糖高血糖状态(EHH)出现。CAD中涉及的发病机理涉及胰岛素缺乏症,与反调节激素的增加有关,导致高血糖症和大分解代谢状态,这一事实可能导致糖氧化,脂解,脂解,酮生成,酮症异生和可能导致严重代谢酸的酮酸的酸性形成。EHH虽然也以严重的高血糖症为特征,但由于缺乏cetocidosis,与CAD不同,因为在这种病理学中,与CAD相比,酮的产生较少。在急性介绍中,患者可能会出现嗜睡,昏昏欲睡,意识丧失,呼吸障碍,呼吸症,呼吸症,腹痛,恶心和呕吐。诊断在于评估血糖,酮症,代谢性酸中毒和渗透性。取决于提到的这些检查的变化的结合,在CAD或EHH中可以区分高血糖危机。这些病理学的治疗方法是围绕水合,钾的替代和胰岛素治疗,三个步骤对于危机的逆转非常重要。关键词:高血糖危机,糖尿病性乳房,高质量高血糖状态,综述。抽象高血糖危机是急性并发症,通常是由糖尿病(DM)引起的,与高血糖直接相关。是住院和医院环境中死亡的重要原因。这种危机可能出现为糖尿病性酮症酸中毒(DKA)或高质性高血糖状态(HHE)。DKA中涉及的发病机理涉及胰岛素缺乏症,与反调节激素的增加有关,导致高血糖和大分解代谢状态,这一事实可能导致糖生成,脂解,酮生成,酮症生成和过度形成酮酸,导致严重的代谢酸酸。HHE,尽管也以严重的高血糖为特征,但与DKA
Jourdain Alexis | 阻断核苷分解代谢以饿死肿瘤免疫生物学(以前称为生物化学),洛桑大学(UNIL),埃帕林格斯 375 000 瑞士法郎 | 48 个月 | KFS-6029-02-2024 Riek Roland | 使用淀粉样蛋白折叠治疗 MAPK 抑制剂耐药黑色素瘤的新策略。化学和应用生物科学系(D-CHAB),苏黎世联邦理工学院,苏黎世 374 640 瑞士法郎 | 48 个月 | KFS-6068-02-2024 Tamburini Jerome | 靶向铁代谢以消除急性髓细胞白血病中的静止白血病干细胞医学专业,日内瓦大学(UNIGE),日内瓦 369 619 瑞士法郎 | 36 个月 | KFS-6032-02-2024 Weller Michael | 沃替西汀治疗胶质母细胞瘤:药物再利用与癌症神经科学相结合 苏黎世大学医院神经内科,苏黎世 341,833 瑞士法郎 | 36 个月 | KFS-6084-02-2024
摘要 ◥ L-精氨酸分解代谢酶精氨酸酶 1 (ARG1) 的表达是一种由肿瘤诱导的髓系细胞介导的中心免疫抑制机制。ARG1 活性的增加促进了免疫抑制微环境的形成,并导致许多癌症表现出更具侵袭性的表型。此前已证实癌症患者和健康受试者的外周血中存在针对 ARG1 衍生表位的内在 T 细胞免疫。为了评估 ARG1 衍生肽疫苗作为单一疗法和与检查点阻断联合疗法的抗肿瘤效果,我们利用了不同的体内同源小鼠肿瘤模型。为了评估抗肿瘤效果,对肿瘤进行了流式细胞术分析和 IHC,并进行了 ELISPOT 测定以表征免疫反应。我们表明,针对 ARG1 的治疗性疫苗能够激活内源性抗肿瘤