摘要—在合成孔径雷达 (SAR) 干涉测量中,两个不同传感器位置之间的相位差用于估计地形地貌。虽然可以通过这种方式找到三维 (3-D) 表面表示,但在固定距离和方位角位置的高度方向上不同散射体的分布仍然未知。与此相反,断层扫描技术能够在高度方向上实现真正的几何分辨能力,并为许多应用和反演问题引入了新的可能性。即使是因重叠和缩短效应导致的 SAR 图像中的误解也可以通过断层扫描处理解决。本文首次展示了极化机载 SAR 断层扫描的成功实验实现。我们提出了针对多基线成像几何的断层成像孔径合成概念,并讨论了有限飞行轨迹数量带来的限制。我们提出了一种方法,用于减少与成像位置不规则和欠采样空间分布相关的高度模糊性。最后,我们解决了极化机载 SAR 断层扫描的实验要求,并使用德国奥伯法芬霍芬附近试验场的 DLR 实验 SAR(E-SAR)在 L 波段获取的多基线数据集展示了实验结果。
光和图像形成的传播:huygens的原理,费马特的原理,反射和折射法,在球形表面薄镜片上的折射,牛顿方程的薄镜。矩阵方法中的矩阵方法:射线传输矩阵,较厚的镜头,系统矩阵元素的重要性,基数,光学仪器,光学仪器,色和单色畸变。叠加和干扰:站立波,节拍,相位和组速度,两光束和多光束干扰,薄介电膜,米歇尔森和Fabry-perot干涉仪,分辨能力,自由云端范围。极化:线性,圆形和椭圆极化,琼斯矩阵,偏振光的产生,二色性,Brewster定律,双重折射,双重折射,电磁和磁光效应。衍射:单个缝隙,矩形和圆形光圈,双缝,许多缝隙,衍射光栅,分散剂,分散功率燃烧的光栅,区域板,矩形孔径。连贯性和全息图:时间连贯性,空间连贯性,点对象的全息图和扩展对象。Laser: Population Inversion, Resonators, Threshold, and Gain Energy Quantization in Light and Matter, Thermal Equilibrium and Blackbody Radiation, Non-laser Sources of Electromagnetic Radiation, Einstein's Theory of Light-Matter Interaction, Elements, operation, Characteristics, types and Parameters of Laser, Rate Equations Absorption, Gain Media, Steady-State Laser Output, Homogeneous Broadening,不均匀的拓宽,时间依赖性现象。
在马来西亚种植了多种芒果品种数十年,水果对全国的交易产生了重大影响。Harumanis在口味和质量方面是最杰出的芒果品种,导致每公斤高达8.57美元的优质价格。由于类似的形态特征,这引发了欺诈以替换较便宜的芒果品种,例如Tong Dam和Susu。形态学特征通常用于区分Harumanis芒果与其他品种,尽管它效率低下,稳定且受环境因素的影响不佳。这项研究旨在评估三种芒果品种中的遗传多态性,并评估保守DNA衍生多态性(CDDP)作为区分Harumanis和非Harumanis Mango样品的DNA标记的潜力。总共研究了15个Harumanis和非Harumanis芒果样品。通过一组14个芒果样品样品的六个CDDP引物扩增了总共371个带。所有六个引物观察到的多态性百分比高于65%。底漆WRKY-R1显示出最高的多态性百分比和多态性信息含量,分别为100%和0.44,使其成为该研究中最有效的CDDP底漆,可在这项研究中区分Harumanis和非Harumanis芒果品种。底漆WRKY-F1在8.57时表现出最高的分辨能力值,最多的基因座数为15。基于CDDP数据构建的UPGMA树状图显示,将14个样品分组为四个主要簇,其中各种不同的品种形成了自己的包装。这项研究表明,CDDP标记可以有效地用于表征不同芒果基因型和遗传多样性分析中,从而促进了领先的Harumanis芒果的DNA指纹的发展,以及对马来西亚芒果水果的更好管理。
摘要我们将在LCLS上介绍最近的OPɵCS计量学,以展示X射线opɵc挑战的Mulɵtude,以及我们如何适应我们的乐器挑战。今年,我们在LCLS安装了两个主要的OPɵC系统,即X射线仪器(TXI)的Kirkpatrick-Baez(KB)镜像系统和RIX的Qrix光谱仪的材料科学共振InelasɵCX射线scaʃing。txi是一种独特的实验厨具,因为它旨在同时采用Soō和柔软的X射线,该射线来自LCLS的两个单独的光束线。TXI的KB镜像系统由两对KB镜子组成,即Soō和柔软的X射线对,总共有四个1-M长的镜子。要安装此镜像系统,我们必须在密封镜室之前在同一ɵ师时(大约一个月)中鉴定所有四个镜子。为了效率,我们将镜子和弯曲器成对符合其歌剧Orientaɵon的成对,即朝向和侧面,同时与verɵcal和横向测量。这是通过在最初为长痕量专业仪(LTP)建造的花岗岩龙门系统上添加fizeau干涉仪来实现的。通过此升级,龙门系统现在包含SɵTCHING仪器和LTP。QRIX光谱仪旨在实现多达约50,000个分辨能力,以便我们可以获取高分辨率的RIX数据。它由抛物线镜和一个巨大的,可变的线间距(VLS)graɵng和1500行/mm组成。用Verɵcalsɵtching仪器在其摇篮中测量了抛物线镜。用LTP测量Graɵng。由于测量方法的2D性质,扭曲误差被视为奖励。这也使我们还可以最大程度地减少安装镜中的扭曲误差。然而,该graɵng在底物中具有预先构造的圆柱形形状,因此我们必须首先用LTP测量形状,然后测量liʃrow中的线密度,同时补偿该形状。将在研讨会上讨论测量策略和计量结果。
生物医学工程学院的本科课程的详细概述1 - 学期I PHY 123:波浪和振荡,光学和热物理学3个学分,3个小时/周的波浪和振荡:简单的谐波振荡器,总能量,总能量,总能量,平均和谐型系统的差异方程两个身体振荡,质量减少,振荡,强迫振荡,共振;渐进波,固定波,组和相速度的波浪,功率和强度。光学:图像缺陷:球形像差,散光,昏迷,失真,曲率,色差。光理论;光线的干扰:Young的双缝实验,边缘的位移及其用途,菲涅尔双晶池,干扰薄膜的干扰,牛顿的环,干涉仪;光的衍射:菲涅尔和弗劳恩霍夫衍射,单缝衍射,圆形光圈的衍射,光学仪器的分辨能力,双裂和N裂缝的衍射,衍射,衍射光栅;极化:极化光的生产和分析,Brewster定律,MALUS定律,双重折射,Nicol Prism,光活性,偏光仪。Chem 125:有机和无机化学3个学分,3小时的原子结构:光,光和其他形式的电磁辐射的粒子和波质性质,原子光谱,原子光谱,BOHR模型,量子数,原子轨道;周期表:元素周期表,原子半径,电离能,电子亲和力,电负性。氧化和还原反应的基本概念。热物理学:温度测量原理:铂电温度计,热电温度计,高温计; Kinetic theory of gases, Maxwell's distribution of molecular speeds, Mean free path, Equipartition of energy, Brownian motion, van der Waal's equation of state, First Law of Thermodynamics and its application, Reversible and irreversible processes, Second Law of thermodynamics, Carnot cycle, Efficiency of heat engines, Carnot's theorem, Entropy and disorder, Thermodynamic functions, Maxwell relations, Clausius- Clapeyron方程,吉布斯相规,热力学第三定律。化学键合:不同类型的键合,共价键的细节,价键理论(VBT),分子几何形状,价壳电子对抑制(VSEPR)理论,轨道,分子轨道理论(MOT)的杂交。
近年来,人们对在室内环境中使用低成本无电池标签定位物体和人员的兴趣日益浓厚,以便在物流、零售、安防等不同领域实现多种应用 [1]。UHF Gen.2 射频识别 (RFID) 标准技术是目前最流行的物品识别解决方案。不幸的是,它在设计时考虑了识别而非定位,因此商业读取器只能获得粗略的位置信息。已经提出了一些方法来提高定位精度 [2],但它们通常在恶劣的传播环境中不可靠或需要读取器端昂贵的硬件(例如,大型天线阵列)。与此同时,一些新的实时定位系统 (RTLS) 应运而生,通过采用超宽带 (UWB) 信号并利用其精细的时间分辨能力提供高精度定位 [3]。然而,当前基于 UWB 的定位系统使用的有源标签电流消耗大于 50 mA,这与能量收集或无线电力传输技术的利用不兼容,因此不可避免地需要电池或极低占空比操作 [4]。最近,遵循与标准 Gen.2 RFID 系统相同的反向散射原理,已经提出了一些解决方案,以实现与 UWB 反向散射信号一起工作的无电池标签,在定位精度方面取得了有趣的结果(约 5-15 厘米)[5]–[12]。尽管基于反向散射的架构在低复杂度和低功耗方面具有良好的特性,但它存在强大的链路预算(由于反射信号导致的双向链路)问题,再加上 UWB 频段非常保守的监管功率发射限制,将其应用限制在非常短距离的场景中(覆盖范围 < 10 米)[13]。本文介绍了一种使用无电池标签的 RTLS,它能够通过使用节能的 UWB 脉冲发生器将范围扩大到 10 米以上。在描述了系统的主要功能块之后,报告了实验结果。该系统是在欧洲航天局 (ESA) 资助的“LOST”(通过 RF 标签定位太空物体)项目内开发的。LOST 的目的是研究合适的技术来定位部署或漂浮在国际空间站或未来空间站内的物体。这种“室内”空间应用旨在跟踪环境中存在的每个带标签的物体,以避免潜在的危险情况,并使宇航员不会浪费极其宝贵的时间寻找丢失的工具。