能够自我更新和多能分化的骨骼干细胞(SSC)有助于骨发育和稳态。已经报道了不同骨骼部位的几个SSC人群。在这里,我们确定了一个形而上的SSC(MPSSC)种群,其转录景观与其他骨间充质基质细胞(BMSC)不同。这些MPSSC由位于生长板下方的SSTR2或PDGFRB + KITL-标记,仅源自肥厚的软骨细胞(HCS)。这些hc衍生的MPSSC具有体外和体内自我更新和多能量的特性,在产后产生大多数HC后代。HC特异性缺失,这是运输所需的内体分选复合物的一个组成部分,会损害HC-TO-MPSSC转换并损害小梁骨的形成。因此,MPSSC是骨髓中BMSC和成骨细胞的主要来源,支持产后小梁骨形成。
如今,人类多能干细胞 (hPSC) 经常用于基因编辑或细胞分选等极具挑战性的应用。在重新编程后,通过应用超低密度接种来产生新的 hPSC 系,使细胞处于压力之下。显然,需要一个稳定且精心组成的培养基环境来确保 hPSC 的存活和正常细胞生长,尤其是在压力实验条件下。细胞受益于恒定的营养和生长因子供应、稳定的 pH 值和低降解产物(例如乳酸或铵)的积累。在这里,我们开发了一种不含异种成分的新一代 hPSC 培养基,该培养基含有稳定的 FGF-2,可确保生长因子的稳定暴露水平,因此不仅可以提高 hPSC 的有效维持和扩增,还可以提高安全使用灵活喂养策略的可能性。当与额外的优化支持补充剂结合使用时,它可以提高细胞存活率和稳定细胞
全基因组筛选是全面了解生物现象分子机制的有效方法。然而,尽管它在过去几十年中广泛应用于各种生物目标,但将其应用于具有暂时和可逆生物输出的生化反应仍然是一项艰巨的挑战。为了揭示各种生化反应背后的分子机制,我们最近开发了复兴筛选方法,该方法结合了基于流式细胞术的细胞分选和从收集的细胞中重建文库。我们对传统全基因组筛选技术的改进已被证明能成功揭示感兴趣的生化反应的分子机制。在本文中,我们阐明了复兴筛选的技术基础,重点介绍了其在 CRISPR-Cas9 单向导 RNA (sgRNA) 文库筛选中的应用。最后,我们还讨论了全基因组筛选的未来,并描述了体外和体内筛选的最新成果。
DNA 损伤激活信号通路对于协调多个细胞过程至关重要,必须严格调控这些过程才能维持基因组稳定性。为了提供全面、公正的 DDR 信号通路观点,我们在人类细胞系中进行了 30 次基于荧光激活细胞分选的全基因组 CRISPR 筛选,使用识别不同内源性 DNA 损伤信号蛋白的抗体来识别参与 DNA 损伤反应 (DDR) 的关键调节剂。我们发现蛋白酶体介导的加工是细胞触发喜树碱和依托泊苷诱导的 DDR 信号的早期和先决条件事件。此外,我们还确定 PRMT1 和 PRMT5 是调节 ATM 蛋白水平的调节剂。此外,我们发现 GNB1L 是 DDR 信号的关键调节剂,因为它作为辅助伴侣分子,专门调节 PIKK 蛋白。总的来说,这些筛查为进一步研究 DDR 提供了丰富的资源,可能有助于深入了解针对这些 DDR 通路以改善治疗结果的策略。
摘要 微生物学领域传统上侧重于在群体水平上研究微生物。然而,包括微流体和成像技术在内的单细胞水平方法的应用揭示了群体内的异质性,使得这些方法对于以更高的分辨率了解细胞活动和相互作用至关重要。此外,单细胞分选为从微生物群体或复杂的微生物群落中分离感兴趣的细胞开辟了新途径。这些分离的细胞可以在下游的单细胞“组学”分析中进一步研究,提供生理和功能信息。然而,由于厌氧微生物对氧气敏感,将这些方法应用于原位条件下的研究仍然具有挑战性。在这里,我们回顾了现有的在单细胞水平上分析活体厌氧微生物的方法,包括活体成像、细胞分选和微流体(芯片实验室)应用,并解决了它们在缺氧操作中遇到的挑战。此外,我们还讨论了针对厌氧菌的非破坏性成像技术的开发,例如不依赖氧气的荧光探针和替代方法。
摘要:LAPTM4B 在大多数类型的癌症中上调,与癌细胞增殖、存活和耐药性以及患者预后不良有关。LAPTM4B 敲低会在代谢应激的背景下抑制自噬体成熟。自噬是一种稳态过程,可在代谢应激反应中降解和回收细胞内成分。自噬具有双重功能,既可以起到抑癌作用,也可以起到致癌作用。EGFR 在决定自噬的抑癌或致癌作用方面起着重要作用。EGFR 家族成员通过各种信号通路调节自噬,包括 PI3K/AKT 信号传导。值得注意的是,LAPTM4B 还通过 PI3K/AKT 信号通路促进癌细胞增殖。此外,LAPTM4B 可以通过阻断活性 EGFR 腔内分选和溶酶体降解来增强和延长 EGFR 信号转导。因此,LAPTM4B可能通过EGFR信号转导与自噬有关。本综述提出LAPTM4B通过EGFR通路参与调控自噬。
在果树机械化栽培过程中,采摘是一个重要的最后阶段,这需要开发新型、便捷、不损坏果实的自动化技术设备,这些设备安装在能够自主采摘果实的机器人平台上,因此,开发用于在高达 5 米的高度以最小的损伤(或无损伤)采摘果园果实的自动化设备是一项紧迫的任务 [1,2]。现有的工业机器人模型不能直接应用于执行苹果的装载、卸载、分选和收获的工艺过程 [3,4]。特别是对于后者,需要开发特殊的执行器、捕获装置及其控制新算法,以便在田间采摘果园的水果 [5,6]。为了确定采摘装置的最佳设计参数,证实其控制系统的参数并将该技术成功引入生产过程,必须进行科学研究。配备了先进的自动抓取机械手的自行式机器人技术装置将能够在无需人工干预的情况下,在工业园林种植中实现高质量的果实采摘技术操作。
调查显示,卡拉尼什的沉积物由分选不良的中质粉砂和一层薄薄的砂质粘土组成,粉砂被归类为“环潮细砂”,碳氢化合物和金属浓度略高于背景水平,这被认为表明存在历史钻探活动。该地区有许多凹陷处有高细砂,但没有一个是附件一中甲烷衍生的自生碳酸盐,而 Scanner Pockmark SAC 距离卡拉尼什 33 公里。物种表明粉砂沉积物主要包括环节动物(多样性和成分占主导地位)、软体动物、甲壳类动物和棘皮动物,包括海蛇尾。存在带有洞穴和土丘的严重生物扰动基质,表明可能存在被 OSPAR 列入受威胁或正在减少的栖息地“海上围栏和穴居巨型动物群落”和被 OSPAR 列入正在减少的海洋蛤蜊,并且该保护区位于卡拉尼什以东 56 公里的挪威边界沉积物计划自然保护海洋保护区内。
声辐射力 (ARF) 是由声波产生的稳定力,是实现微物体操作的一种便捷方式,例如微样本分离 [1-3] 和富集 [4]、细胞分选 [5,6] 和单细胞操作 [7]。与使用时间周期声场相比,使用脉冲和波列等瞬态激励可以实现更精确的操作 [1-7]。首先,脉冲声操作受瑞利声流的干扰较小 [8,9],因为辐射力比声流建立得快得多 [10,11]。其次,使用声波包可以定位声干涉图样,从而控制声捕获区域的空间范围 [12]。事实上,驻波比行波施加了大得多的辐射力(在小颗粒极限内),激光制导声镊(LGAT)[13] 利用这种干涉原理,创造了一种混合辐射力景观,该景观将高振幅压电声场(强,Z 场)和光图案光生声场(弱,L 场)耦合在一起。混合场保留了 L 场的空间信息和 Z 场的强度。
1.引言 近年来,磁性纳米材料由于其显著的磁性能而引起了人们的极大兴趣,并已在生物和生物医学领域得到实际应用 [1–4]。超顺磁性磁铁矿(Fe3O4)因其超磁性能而被开发为不同生物医学技术的合适候选材料,例如磁共振成像[5–7]、高温治疗[8,9]、药物靶向输送[10–13]、标记、细胞分选[14]和生物制品分离[1,13,15]。已经合成了大量磁性纳米粒子,它们通常由 Fe3O4 磁性纳米粒子和可合成改性的壳组成,例如 SiO2 [16]、Au [17]、LDH [18]、聚甲基丙烯酸缩水甘油酯 [19]、聚苯乙烯 [20] 等。其中,SiO 2 因能保持 Fe 3 O 4 核心的磁性、化学稳定性、生物相容性、表面改性灵活性等优势被广泛认为是最佳的壳层材料[21, 22],且表面分布有大量硅醇基团,可以为有机聚合物、生物活性分子、自由基等提供结合位点[23]。