金黄色葡萄球菌在全世界造成巨大的发病率和死亡率。然而,研制有效的疫苗却极具挑战性。由于定植相互作用,人类中经常发现预先存在的金黄色葡萄球菌特异性 CD4 + T 细胞,但迄今为止尚不清楚它们的表型以及它们如何影响疫苗效力。使用活化诱导标记检测以效应功能独立的方式对金黄色葡萄球菌特异性 CD4 + T 细胞进行分选,进行单细胞转录组分析。值得注意的是,金黄色葡萄球菌特异性 CD4 + T 细胞不仅由比之前描述的更广泛的常规 T 细胞 (Tcon) 组成,而且还由调节性 T 细胞 (Treg) 组成。与多克隆激活的 CD4 + T 细胞相比,金黄色葡萄球菌特异性 Tcon 富含 Th17 型细胞因子基因 IL17A 、 IL22 和 IL26 的表达,而金黄色葡萄球菌特异性 Treg 的百分比更高,表达具有 Ig 和 ITIM 结构域的 T 细胞免疫受体 (TIGIT),这是一种多效性免疫检查点。值得注意的是,拮抗性抗 TIGIT mAb Tiragolumab 在体外增加了对金黄色葡萄球菌的 IL-1 b 产生。因此,这些结果揭示了金黄色葡萄球菌特异性 TIGIT + 的存在
生物纳米孔对控制生物分子跨细胞脂质膜的进出口至关重要。它们在生物物理学和生物技术领域得到广泛应用,其通常较窄且固定的直径能够选择性地运输离子和小分子,以及用于测序应用的 DNA 和肽。然而,由于其通道尺寸较小,因此无法通过较大的大分子,例如治疗剂。在这里,利用 DNA 折纸纳米技术、机器启发设计和合成生物学的独特组合特性,提出一种结构可重构的 DNA 折纸 MechanoPore (MP),其管腔可通过分子触发器调整大小。通过 3D-DNA-PAINT 超分辨率成像和染料流入分析证实了 MP 在 3 个稳定状态之间的可控切换,这是通过反相乳液 cDICE 技术在脂质体膜中重建大型 MP 后实现的。跨膜运输的共聚焦成像显示了具有可调阈值的尺寸选择性行为。重要的是,构象变化是完全可逆的,证明了强大的机械切换可以克服来自周围脂质分子的压力。这些 MP 推动了纳米孔技术的发展,提供了可以根据需要进行调整的功能性纳米结构,从而影响了药物输送、生物分子分选和传感以及自下而上的合成生物学等多种领域。
使用HSOP 461和HSOP 466(Spectratating GuideLine),使用T细胞的磁珠细胞分选 T细胞受体谱分型。 使用商业试剂盒(QIAGEN)的RNA提取以及遵循制造商的说明和内部标准操作程序HSOP499。 Reverse transcription for cDNA synthesis using commercial kit (Invitrogen) and in-house standard operating procedures HSOP 780 RT-PCR using HSOP 467 Fragment analysis HSOP 468 AutoMACS Pro (MiltenyiBiotec), GorScript TM First-Strand Synthesis System for RT-PCR (Promega), QiagenHot Star Taq DNA Polymerase, G Storm 4 PCR machine and Proflex机器,3500XL遗传分析仪(FSOP 491)。T细胞受体谱分型。使用商业试剂盒(QIAGEN)的RNA提取以及遵循制造商的说明和内部标准操作程序HSOP499。Reverse transcription for cDNA synthesis using commercial kit (Invitrogen) and in-house standard operating procedures HSOP 780 RT-PCR using HSOP 467 Fragment analysis HSOP 468 AutoMACS Pro (MiltenyiBiotec), GorScript TM First-Strand Synthesis System for RT-PCR (Promega), QiagenHot Star Taq DNA Polymerase, G Storm 4 PCR machine and Proflex机器,3500XL遗传分析仪(FSOP 491)。
CRISPR-Cas9 技术有可能彻底改变包括雷特综合征在内的各种疾病的治疗方法,因为它能够纠正人类患者细胞中的基因或突变。然而,在其广泛应用于临床之前,需要解决几个挑战。这些挑战包括向靶细胞的低传递效率、基因组编辑过程的实际效率以及 CRISPR-Cas 系统运行的精确度。在此,该研究提出了一个磁性纳米粒子辅助基因组编辑 (MAGE) 平台,它显著提高了 CRISPR-Cas9 技术的转染效率、生物相容性和基因组编辑准确性。为了证明所开发技术的可行性,MAGE 被用于纠正雷特综合征患者诱导多能干细胞来源的神经祖细胞 (iPSC-NPC) 中突变的 MeCP2 基因。 MAGE 结合磁转染和磁激活细胞分选,实现了更高的多质粒递送 (99.3%) 和修复效率 (42.95%),并且孵育时间明显短于传统转染剂,且不受质粒大小限制。修复后的 iPSC-NPC 在分化为神经元时表现出与野生型神经元相似的特征,进一步验证了 MAGE 及其未来临床应用的潜力。简而言之,开发的纳米生物组合 CRISPR-Cas9 技术为各种临床应用提供了潜力,特别是在针对不同遗传疾病的干细胞疗法中。
摘要。Survivin 在多种癌症中过表达,与治疗耐药性和预后相关。微小 RNA (miRNA) 直接调控多个靶基因,是多种癌症的潜在治疗剂。本研究评估了 miR-218 在骨肉瘤中的多个基因靶点,包括 survivin,并比较了 miR-218 与抗 survivin 药物 YM155 的抗肿瘤作用。研究评估了骨肉瘤和成骨细胞系中 miR-218 和 survivin 的表达水平,以及用 miR-218 或 YM155 治疗后细胞的增殖、迁移和侵袭能力。使用荧光激活细胞分选分析评估细胞死亡形式,以检查侵袭能力相关基因的表达。将骨肉瘤细胞系皮下注射到免疫缺陷小鼠体内;然后用 miR-218 或 YM155 治疗小鼠以评估这些药物的抗肿瘤作用。结果显示,与正常成骨细胞相比,骨肉瘤细胞系中 miR-218 下调,而 survivin 过表达。过表达 miR-218(miR-218 组)或施用 YM155(YM155 组)后 survivin 表达受到抑制,导致骨肉瘤细胞凋亡和增殖受到抑制。miR-218 组的侵袭和迁移能力受到抑制,但在 YM155 组没有受到抑制。在动物模型中,miR-218 和 YM155 组均显示肿瘤体积缩小,survivin 表达降低。
Diagnologix 正在开发符合 cGMP 标准的细胞处理系统,用于处理来自大量生物体液的干细胞和免疫细胞,以供临床应用。Diagnologix 发现并应用了脂质壳全氟碳填充微泡 (MB),该微泡已获得 FDA 批准,可用作超声造影剂、用于细胞分离的自动驾驶车辆以及用于靶细胞调节的可调节人工细胞。专利的 BUBLES(浮力分离)技术已应用于分离人类造血干细胞,并已证明在免疫缺陷小鼠中成功植入。Diagnologix 最近通过独特的顺序多标记细胞分选方案(称为 i(terative)BUBLES)实现了可扩展的细胞分离,用于生产记忆干细胞 T (TSCM),以克服过继细胞疗法(包括 CAR-T 细胞制造)的细胞处理瓶颈。有力的证据表明,CAR-T 细胞在患者体内的持久性与工程 TSCM 的富集有关。封闭式CAR-T细胞生产系统,从特定T细胞类型的分离到随后的细胞激活、基因改造和细胞扩增,都可以作为一个单元进行组装。该系统有望实现CAR-T细胞生产的去中心化,从而惠及更多患者。
成功翻译许多体外工程组织需要足够的血管化。本研究介绍了一种新型胶原蛋白衍生物,该衍生物含有多种识别肽,用于基于分选酶 A (SrtA) 和因子 XIII (FXIII) 的正交酶交联。SrtA 介导的交联能够在本体水凝胶中快速共同设计人类血液和淋巴微毛细血管和中尺度毛细血管。凝胶硬度的调节决定了新血管形成的程度,而血液和淋巴毛细血管的相对数量则重现了最初植入水凝胶的血液和淋巴内皮细胞的比例。生物工程毛细血管很容易形成管腔结构,并在体外和体内表现出典型的成熟标志物。次级交联酶因子 XIII 用于将 VEGF 模拟 QK 肽原位束缚到胶原蛋白上。这种方法支持在没有外源性 VEGF 的情况下形成血液和淋巴毛细血管。正交酶交联进一步用于生物工程水凝胶,其具有促血管生成和抗血管生成特性的空间定义聚合物组成。最后,基于微凝胶二次交联的大孔支架可实现独立于支持成纤维细胞的血管形成。总体而言,这项工作首次展示了使用高度通用的胶原蛋白衍生物共同设计成熟的微尺寸和中尺寸血液和淋巴毛细血管。
摘要:卵巢癌是第五大癌症病因,其一线治疗药物主要是铂类药物和 PARP 抑制剂,而后期治疗药物的选择非常有限。因此,需要替代的治疗方案。在卵巢癌中过表达的 Nectin-2 是一种已知的免疫检查点,可使免疫细胞功能失调。在本研究中,我们生成了一种新型抗 Nectin-2 抗体(嵌合 12G1,c12G1),并使用表位图谱、酶联免疫吸附测定、表面等离子体共振、荧光激活细胞分选和内化测定对其进行了进一步表征。c12G1 抗体与人 Nectin-2 的 C2 结构域具有高亲和力(KD = 2.90 × 10 − 10 M),但不与小鼠 Nectin-2 结合。然后,我们生成了一种抗体-药物偶联物,该偶联物由与 DM1 偶联的 c12G1 抗体组成,并研究了其在体外和体内对癌细胞的细胞毒性作用。c12G1-DM1 在 nectin-2 阳性卵巢癌细胞中诱导细胞周期停滞在有丝分裂期,但在 nectin-2 阴性癌细胞中无此作用。与正常 IgG-DM1 相比,c12G1-DM1 在卵巢癌细胞中诱导的细胞毒性增加了约 100 倍,IC 50 在 0.1 nM~7.4 nM 范围内。此外,c12G1-DM1 在移植了 OV-90 细胞的小鼠异种移植模型中显示出约 91% 的肿瘤生长抑制率。这些结果表明 c12G1-DM1 可用作针对 nectin-2 阳性卵巢癌的潜在治疗剂。
背景 . 液泡蛋白分选16 (VPS16) 过表达近来被认为与癌症生长和耐药性有关;然而,关于 VPS16 是否在肝细胞癌 (LIHC) 中起重要作用知之甚少。方法 . 使用TIMER2在线数据库分析VPS16在泛癌中的表达,并使用Xena Browser探讨VPS16表达水平与生存时间之间的相关性。使用R语言测试TCGA数据库中374例LIHC病例的生存数据。使用DESeq2进行差异表达基因 (DEG) 分析。使用HPA数据库验证VPS16在LIHC中的表达水平。使用clusterProfiler包通过GO/KEGG富集分析分析功能和相关信号通路。利用药物敏感性分析和分子对接技术筛选出最敏感的针对VPS16分子的药物。结果 .全癌分析显示VPS16在多种肿瘤中均有高表达,尤其在LIHC中。随着LIHC的T分期和分级的增加,VPS16的表达水平也增加。VPS16的表达与LIHC患者总生存期呈负相关。分期可作为独立的预后因素。共发现63种敏感药物,其中19种药物与VPS16显示出较强的分子结合能。结论。VPS16可能是LIHC诊断和预后的潜在生物标志物。未来以VPS16为靶点的药物可能应用于LIHC的治疗。
摘要:由于发育和成人大脑以及疾病中的活神经茎/祖细胞(NSPC)迫切需要简单和非侵入性鉴定,因为在预后,诊断和神经系统疾病治疗方面的潜在临床重要性,因此在脑肿瘤中(例如脑肿瘤)。在这里,我们报告了一种名为P-HTMI的发光共轭寡硫苯(LCO),用于非侵入性和未扩增的实时检测人类患者衍生的胶质母细胞瘤(GBM)干细胞样细胞和NSPC的实时检测。虽然P-HTMI仅染色了其他细胞类型的一小部分,但在细胞培养中仅添加了P-HTMI,从而在几分钟内有效地检测了啮齿动物和人类的NSPC或GBM细胞。p-HTMI用类似组氨酸/组胺的侧链甲基化的咪唑部分官能化,非甲基化类似物的功能不正常。人类GBM细胞的细胞分选实验表明,P-HTMI标记了与CD271相同的细胞群体,这是一种针对干细胞样细胞的标记和胶质母细胞瘤中迅速迁移的细胞。我们的结果表明,LCO P-HTMI是一种通用的工具,用于立即和选择性检测神经和神经胶质瘤茎和祖细胞。关键字:生物电子学,祖细胞,脑肿瘤,甲基化,p75ntr■简介