摘要 — 可再生能源供应是解决数据中心不断增加的电力成本、能源消耗和有害气体排放问题的有前途的解决方案。然而,由于可再生能源的不稳定性,可再生能源供应不足可能导致使用储存能源或棕色能源。为了解决这个问题,本文提出了一种不稳定性弹性可再生能源分配系统。我们将作业的服务水平目标 (SLO) 定义为仅使用提供的可再生能源成功运行的概率。系统将具有相同 SLO 级别的作业分配给相同的物理机器 (PM) 组,并使用可再生能源发电机为每个 PM 组供电,这些发电机有不低于其 SLO 的概率生产不低于其能源需求的数量。我们使用深度学习技术来预测生产不低于每种可再生能源的每个值的概率,并预测每个 PM 区域的能源需求。我们制定了一个优化问题,将具有不同不稳定性的可再生能源资源匹配到不同的 PM 组进行供应,并使用强化学习方法和线性规划方法对其进行求解。我们进一步提出了一种能源驱动的计算资源分配方法,该方法根据每个 PM 组中的作业截止时间和故障概率调整每个作业的计算资源量,以及一种基于故障预测的节能方法。实际跟踪驱动的实验表明,与其他方法相比,我们的方法实现了更低的 SLO 违规、总能源货币成本和总碳排放量,并且与单个方法的有效性相比。
摘要 - 分配系统中安装在分配系统中的Battery储能系统(BESS)和太阳能电动汽车(PV)逆变器源通常旨在提高系统的弹性。这些来源可以通过增加和保持服务的连续性,同时在高需求期间提供剃须能力,从而补充大量电力系统。在配置用于与下垂(GFMD)特性的网格形成时,可以设计为可调节能源,以支持往返岛屿条件的无缝过渡,而无需更改模式,没有中断。通过分布公用事业部署的传统保护方案使用倒数过时的元素(51)来协调网络中的保护设备,例如保险丝,隐居器和断路器。在具有基于逆变器的来源的岛屿系统中,由于可用故障电流量有限,因此需要修改此保护方案。逆变器(BESS和PV)由于其切换设备的热量考虑,其短路能力受到限制,从而有效地使逆变器成为系统故障的当前限制源。结果是,逆变器不作为传统来源,而保护性继电器计划必须适应有限的断层电流贡献。作者评估了用BESS作为能源供应的分配变电站的岛化操作。实时数字仿真和硬件中的结果(HIL)测试产生了一种简单的确定时间过电流协调方法,并具有标准的保护性继电器元素,以保护分配馈线。为了在网格和岛屿运行期间成功运行,继电器需要在系统被网格且确定的时间过电流协调的同时区分时间过电流的协调性。根据创新的频率移动方法启用了保护性继电器元素,以避免需要保护级的通信渠道。在岛状条件下,一种负载方案为系统提供了额外的弹性和稳定性,同时改善了连接负载的服务连续性。本文讨论了基于逆变器的能源在分配系统中的使用,这些来源的故障当前贡献,岛岛操作期间的保护性继电器解决方案,在岛状条件下的负载拆料方案以及检测开源条件(在常见耦合[PCC]的上游[PCC]的上游上游)。所有讨论点都用示例说明。
摘要 - 大多数大规模氨的产生通常是关于天然气或煤炭的,这会导致有害的碳污染进入大气。研究了一个小规模“绿色”氨植物的生存能力,其中可再生电力分别通过电解和空气液化为Haber-Bosch系统提供氢和氮,以合成氨。绿色氨植物可以作为对电力分配系统的需求响应载荷,并通过氨中的化学能量存储提供长期的能量存储。在本文中提出了电力分配系统和电力运行的氨植物的协调操作模型。案例研究是对修改的PG&E 69节点电分配系统以及小规模氨植物进行的。的结果表明,氨植物可以充分充当需求响应资源,并有效地影响分布位置边际价格(DLMP)。
Entegris®、Entegris Rings Design® 和其他产品名称是 Entegris, Inc. 的商标,列于 entegris.com/trademarks 上。所有第三方产品名称、徽标和公司名称均为其各自所有者的商标或注册商标。使用它们并不表示商标所有者与它们有任何关联、赞助或认可。
量子密钥分发 (QKD) 能够为敏感数据传输和通信应用提供面向未来的长期保护,即使面对量子计算机的迫在眉睫的安全威胁也是如此。弗劳恩霍夫 HHI 开发了一种高速 QKD 系统,可与商用网络加密器无缝集成。
摘要:微网格的最新发展导致对DC分布的兴趣增加,因为它在将能源从可再生能源分配到直流负载方面的效率很高。本文旨在分析相对大尺寸的6 kW PV安装中AC和DC系统的性能,以确定DC分布提供的效率提高水平,并确定进一步改进的方法。AC系统的基线年度数据是从爱尔兰西海岸岛Inis Oirr的一所国家学校的现场安装中收集的。结果表明,与现有的AC系统相比,DC分配系统的使用可能有可能减少系统损失高达50%,以及每年节省电网能量5%的能力。此外,分析表明,当功耗与系统生产相当时,DC在春季和秋季的表现更高,但是夏季的影响较小,当PV生产高于需求时。这些发现提供了对单个建筑物和大型微网格中未来DC分配系统的好处的见解。
本文通过将相变材料(PCM)纳入建筑物供应气管中,以增加建筑物的热存储能力,从而提出了一种新颖的储能解决方案。与PCM集成壁相比,该解决方案具有各种优势,包括更有效的传热(强制对流和更大的温度差异)。在非高峰时段,系统以供应空气温度在材料的凝固点以下以冷却能量为PCM充电。在高峰时段,使用较高的供应空气温度,以便可以将存储的能量排放到供应空气中。这将建筑物的冷却负载的一部分从峰值的小时转移到非高峰时段。使用实验数据开发并修改了导管中PCM熔化和凝固的数值模型。通过将PCM模型与simulink共模拟平台中的能量全型DOE结合到EnergyPlus典型建筑模型来进行整个构建能量模拟。模拟,而PCM存储将On-Peak的能源消耗降低了20-25%。使用当前使用时间的电力率确定电力成本和投资回收期。
免责声明 本信息是根据美国政府机构资助的工作编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
3 Jade过程图是报告的一部分。Jade过程图描述了假想状态的理想化电力分配计划过程,Jade是一个位于联邦监管市场中的放松状态。4委员会为公用事业公司建立了一名飞行员,以提议pims9618,PC51的一部分。
摘要:越来越多地采用了分散的可再生能源产生(例如太阳能光电板和风力涡轮机)和低碳技术将增加分配网络在不久的将来所经历的压力。在这种情况下,由于其灵活性,降低了成本和快速部署能力,能源存储正成为传统昂贵增强网络基础设施的关键替代品。在这项工作中,提出了一种端到端数据驱动的解决方案,以最佳设计电池单元的控制,以减少峰值电力需求。建议的解决方案使用最先进的机器学习方法来预测电力需求和PV生成,并结合优化策略,以最大程度地利用光伏能量来为存储单元充电。为此,在英国普利茅斯附近的Stentaway主要变电站和其他六个地点收集的历史需求,天气和太阳能产生数据。