直接数据输入 Trillium 的 Provider Direct 门户:https://www.ncinno.org/ 电子索赔提交:可以使用 HIPAA 标准电子交易集将定制计划医疗补助和州资助索赔的行为健康和 I/DD 索赔提交给 Trillium,这可以通过三种方式完成:通过 Web 门户使用行为健康 I/DD 安全提供商门户 - Provider Direct(https://www.ncinno.org/),通过安全 FTP,或者提供商可以通过清算所提交索赔。如果通过清算所提交索赔,Trillium 同意使用 Change Healthcare(原名 Emdeon)和 SSI 集团。使用 SSI 集团或直接发送给 Trillium 时,Trillium 的医疗付款人 ID 为 43071,使用 Change Healthcare(Emdeon)时为 56089。纸质索赔提交:对于行为健康和 I/DD 纸质索赔,请提交至:Trillium Health Resources PO Box 240909 Apple Valley, MN 55124
摘要 基于测量的量子计算 (MBQC) 是一种很有前途的方法,可以减少嘈杂的中型量子算法(例如变分量子特征值求解器 (VQE))中的电路深度。与基于门的计算不同,MBQC 在预先准备的资源状态上使用局部测量,在电路深度和量子比特数之间提供权衡。确保确定性对 MBQC 至关重要,特别是在 VQE 环境中,因为测量模式缺乏流动性会导致在无关位置评估成本函数。本研究介绍了尊重确定性并类似于广泛使用的与问题无关的硬件高效 VQE 假设的 MBVQE 假设。我们使用 Schwinger Hamiltonian 和 XY 模型上的理想模拟来评估我们的方法,并在具有自适应测量功能的 IBM 硬件上进行实验。在我们的用例中,我们发现通过后选择确保确定性比通过自适应测量效果更好,但会增加采样成本。此外,我们提出了一种有效的 MBQC 启发式方法,用于在具有重十六进制连接的硬件上准备资源状态,特别是集群状态,需要单轮测量,并在具有 27 和 127 个量子比特的量子计算机上实现此方案。我们观察到较大集群状态的显着改进,尽管直接基于门的实现对于较小的实例实现了更高的保真度。
简介。近年来,变异量子算法[1-3]和量子机学习[4 - 9]吸引的最初兴奋已被贫瘠的高原现象[10-56]缓解。也就是说,越来越意识到,大量的量子学习体系结构表现出损失功能的景观,这些景观将指数置于系统大小的平均值上。因此,确定事实证明不会导致贫瘠高原的建筑和培训策略已成为一个高度活跃的研究领域。然而,从某种意义上说,这些策略都利用了问题的一些简单基础结构。这引起了一个问题:是否能够避免避免贫瘠的高原以有效地经典地模拟损失函数的相同结构吗?在这里,我们认为这个问题的答案是“是”。具体来说,我们声称可以使用多项式时间内运行的经典算法模拟可证明不表现出贫瘠高原的损失景观。重要的是,此模拟仍可能需要在初始数据采集阶段使用量子计算机[57 - 60],但是它不需要在量子设备或混合量子量子式优化环上实现的参数化量子电路。这些论点可以理解为无贫瘠高原景观中各种量子电路的信息处理能力的消除形式。
变分量子算法 (VQA) 代表了一种利用当前量子计算基础设施的有前途的方法。VQA 基于通过经典算法在闭环中优化的参数化量子电路。这种混合方法减少了量子处理单元的负载,但代价是经典优化会产生平坦的能量景观。现有的优化技术,包括虚时间传播、自然梯度或基于动量的方法,都是有前途的候选方法,但要么给量子设备带来沉重的负担,要么经常遭受收敛速度缓慢的困扰。在这项工作中,我们提出了量子 Broyden 自适应自然梯度 (qBang) 方法,这是一种新颖的优化器,旨在提炼现有方法的最佳方面。通过采用 Broyden 方法近似 Fisher 信息矩阵中的更新并将其与基于动量的算法相结合,qBang 降低了量子资源需求,同时比资源要求更高的替代方案表现更好。荒原、量子化学和最大切割问题的基准测试表明,在以下情况下,其整体性能稳定,并且比现有技术有明显改进
摘要 — 当前的量子计算机 (QC) 属于嘈杂的中型量子 (NISQ) 类,其特点是量子比特嘈杂、量子比特能力有限、电路深度有限。这些限制导致了混合量子经典算法的发展,该算法将计算成本分摊到经典硬件和量子硬件之间。在混合算法中,提到了变分量子特征值求解器 (VQE)。VQE 是一种变分量子算法,旨在估计通用门量子架构上系统的特征值和特征向量。电磁学中的一个典型问题是波导内特征模的计算。按照有限差分法,波动方程可以重写为特征值问题。这项工作利用量子计算中的量子叠加和纠缠来解决方波导模式问题。随着量子比特数的增加,该算法预计将比传统计算技术表现出指数级的效率。模拟是在 IBM 的三量子比特量子模拟器 Qasm IBM Simulator 上进行的。考虑到基于计算的量子硬件测量,进行了基于镜头的模拟。以二维本征模场分布形式报告的概率读出结果接近理想值,量子比特数很少,证实了利用量子优势制定创新本征解法的可能性。
我们提出了用于制备 Greenberger-Horne-Zeilinger (GHZ) 状态的优化提炼方案。我们的方法依赖于以受白噪声影响的 GHZ 状态作为输入来训练变分量子电路。通过对该方案进行一次迭代优化,我们发现可以提高 GHZ 状态的保真度,尽管进一步迭代会降低保真度。同样的方案,作用于相干失真的纯态输入,仅在某些特殊情况下有效。然而,我们表明,当在协议的两次迭代后优化输出时,可以实现截然不同的结果。在这种情况下,获得的方案在从受白噪声影响的输入中提炼 GHZ 状态方面更有效。此外,它们还可以纠正几种类型的相干纯态误差。
摘要。本研究提出使用变分量子分类器对小麦品种进行自动分类。在大型数据集上训练的模型将能够识别种子特征和品种成员之间的独特模式和关系。这将使农民和研究人员能够更准确地识别小麦品种,从而可以改善种植和作物管理过程。这种方法不仅符合优化农业生产的需要,而且符合使用先进技术实现农业部门精准和高效的背景。通过这项研究,预计小麦生产的质量和可持续性将得到改善,这对粮食安全和可持续农业发展至关重要。该问题的目标是根据种子特征对小麦品种进行分类。VQC 在训练数据集上进行训练,然后在测试数据集上进行评估。为了评估模型的性能,使用了各种指标,例如准确度、精确度、召回率、F1 分数和混淆矩阵。
近几年,用于分析各种领域数据的机器学习 (ML) 技术取得了巨大进步。量子物理学也在各个方面受益于机器学习,例如量子系统的控制、分类和估计任务 [1-6]。在这种情况下,机器学习技术已被用来分析从测量量子系统中获得的经典数据。另一方面,人们进行了大量研究,利用量子特性来改进机器学习技术 [7,8]。量子人工神经网络 [9] 和量子核方法 [10] 的开发就是很好的例子。对于量子机器学习算法,学习电路已被证明是一种实用的方法 [11]。考虑到目前可用的噪声中型量子计算机 [12] 只有很少的量子比特(50-100 个量子比特),人们设计了混合量子-经典算法来开发具有自由控制参数的短深度量子电路。这些电路被称为变分量子电路 (VQC) [13-16]。在 VQC 中,优化任务是使用经典优化技术对量子 (量子电路中的自由参数) 和经典参数 (用于后处理) 进行的 [13]。量子技术的主要障碍之一是量子系统与周围环境的相互作用,这会导致量子系统失去相干性 [17]。通常对物理过程进行简化。例如,所谓的马尔可夫近似,其中假设系统的演化不取决于其动态历史,而只取决于其当前状态。因此,忽略记忆方面,这通常可以作为一个很好的近似值。然而,必须强调的是,非马尔可夫特征经常出现在量子系统的动力学中 [18, 19]。此外,一些物理过程强烈地受到非马尔可夫性的影响,例如油藏工程 [ 20 , 21 ]、状态隐形传态 [ 22 ]、量子计量 [ 23 ],甚至当前的量子计算机 [ 24 , 25 ]。此外,非马尔可夫性可以作为一种资源来利用 [ 26 ]。准确确定非马尔可夫性的程度需要大量的测量。此外,对于基于纠缠动力学的非马尔可夫性测量,需要考虑一个辅助量子比特,该量子比特应受到保护以避免与环境相互作用。为了克服这些挑战,机器学习技术(如神经网络 [ 27 ]、支持向量机 [ 28 ]、随机森林回归器 [ 29 ]、基于张量网络的机器学习 [ 30 ] 和多项式回归 [ 31 ])已用于确定量子过程的非马尔可夫性程度。此外,
1 LG 电子多伦多人工智能实验室,加拿大安大略省多伦多 M5V 1M3 2 多伦多大学化学系,加拿大安大略省多伦多 M5G 1Z8 3 多伦多大学计算机科学系,加拿大安大略省多伦多 M5S 2E4 4 威斯康星大学麦迪逊分校化学系,美国威斯康星州麦迪逊市 1101 University Ave. 53706 5 威斯康星大学麦迪逊分校物理系,美国威斯康星州麦迪逊市 1150 University Ave. 53706 6 耶鲁大学耶鲁量子研究所,美国康涅狄格州纽黑文 06520-8263 PO Box 208334 7 耶鲁大学化学系,美国康涅狄格州纽黑文 06520 PO Box 208107 8 萨里大学数学系,英国吉尔福德 9 能源耶鲁大学科学研究所,邮政信箱 27394,康涅狄格州西黑文 06516-7394,美国 10 加拿大安大略省多伦多人工智能矢量研究所,邮编 M5S 1M1 11 加拿大安大略省多伦多高级研究所,邮编 M5G 1Z8,加拿大 ∗ 任何通信均应发送给作者。