近年来,机器学习、量子多体物理学和量子信息科学等领域的交流卓有成效。这种多学科的互动在一定程度上得益于以下发现:人工神经网络为参数化量子多体希尔伯特空间的子集提供了强大的归纳偏差。尽管通过神经网络描述希尔伯特空间向量会导致无法对此类量子态子集进行精确的线性代数运算,但由于存在一种名为变分蒙特卡洛 (VMC) 的有效随机近似算法 [8,30],基于神经网络的量子态 (NQS) 能够准确揭示量子自旋系统基态的属性,并使用 VMC 的时间相关变体(即所谓的 t-VMC)模拟其时间演化 [6,7]。自从复值受限玻尔兹曼机 [ 8 ] 问世以来,神经网络量子态的范围已经扩大到涵盖各种量子系统,这通过使用日益复杂(通常是多层的)的架构成为可能。相互作用的另一个驱动因素是发现 VMC 和变分量子算法 (VQA) 之间有着密切的类似性。特别是 Stokes 等人 [ 40 ] 在量子信息几何方面的最新研究阐明了机器学习中的自然梯度下降 [ 2 ]、随机重构 VMC [ 38 ] 和量子计算中的变分虚时间演化 [ 45 ] 之间的联系。本教程论文旨在作为对连续变量量子系统的基于流的 VMC 和 t-VMC 的独立回顾。为了具体起见,我们以玻色子量子系统为例进行讨论,以场振幅基表示。场振幅基并不是 VMC 文献 3 的传统焦点,VMC 文献集中于更易于用 Fock 基解释的非相对论系统。然而,场振幅基在具有相对论对称性的系统中是自然的,其中受控玻色子哈密顿量在 L 2 空间中表示为简单的薛定谔算子。因此,哈密顿量的简单性也提供了教学优势。场振幅基的一个可能的计算优势是,它不需要人为地将允许的模式占用数限制在有限范围内以进行数值实现。为了促进
图 1 在经典计算机上使用不同的轨道基组初始化为不同自旋多重性的 LiH 和 TiH 双原子分子的预测 CCSD 键解离曲线。预测的 TiH 基态配置会根据所选的轨道基组而变化。基态配置用实心标记表示,而较高能量配置用空心标记表示。
摘要:量子化学是噪声中型量子 (NISQ) 设备的一个有前途的应用。然而,量子计算机迄今为止尚未成功解决具有真正科学意义的问题,算法的进步对于充分利用当今可用的普通 NISQ 机器来说是必不可少的。我们讨论了一种基于将分子汉密尔顿量划分为两部分的基态能量估计方法:一部分是非上下文的,可以用经典方法求解,另一部分是上下文分量,可通过变分量子特征求解器 (VQE) 程序获得量子校正。这种方法被称为上下文子空间 VQE (CS-VQE);然而,在将其部署到 NISQ 设备上之前,还有一些障碍需要克服。我们在这里解决的问题是 ansatz,即我们在 VQE 期间对其进行优化的参数化量子态;最初并不清楚汉密尔顿量的分裂应如何反映在 CS-VQE ansa ̈ tze 中。我们提出了一种“非上下文投影”方法,该方法由稳定器形式中 CS-VQE 的重新表述所阐明。这定义了从完整电子结构问题到上下文子空间的假设限制,并促进了可在 NISQ 设备上部署的 CS-VQE 的实现。我们使用量子模拟器验证了非上下文投影假设,并展示了一组小分子的化学精确基态能量计算,同时显著减少了所需的量子比特数和电路深度。
1作物科学和农业验证系,捷克生命科学大学的热带农业学院,布拉格大学,kamin g cká129,165 00 00,捷克共和国29,165 00 165 00 00布拉格,捷克共和国3植物保护局,农业生物学,食品和自然资源学系,捷克生命科学大学布拉格,kamin cká129,165 00 00 129,165 00布拉格,捷克共和国5研究中心农业技术,尼特拉的斯洛伐克农业大学,tr。A. Hlinku 2,94976 Nitra,斯洛伐克 *通信:eloy@ftz.czu.cz
各种量子电路被用作多功能量子机学习模型。一些经验结果在监督和生成的学习任务中具有优势。但是,当应用于加固学习时,却少知道。在这项工作中,我们认为是由低深度硬件效果ANSATZ组成的变异量子电路,是增强学习代理的参数化策略。我们表明,可以使用对数数量的参数总数来获得策略梯度的ϵ- approximation。我们从经验上验证了这种量子模型的行为与标准基准标记环境中使用的典型经典神经网络和仅使用一小部分参数所使用的典型经典神经网络。此外,我们使用Fisher Information矩阵频谱研究量子策略梯度中的贫瘠高原现象。
噪声中型量子器件使得量子神经网络 (QNN) 的变分量子电路 (VQC) 得以实现。尽管基于 VQC 的 QNN 已在许多机器学习任务中取得成功,但 VQC 的表示和泛化能力仍需要进一步研究,尤其是在考虑经典输入的维数时。在这项工作中,我们首先提出了一种端到端 QNN,TTN-VQC,它由基于张量训练网络 (TTN) 的量子张量网络(用于降维)和用于函数回归的 VQC 组成。然后,我们针对 TTN-VQC 的表示和泛化能力进行误差性能分析。我们还利用 Polyak-Lojasiewicz 条件来表征 TTN-VQC 的优化属性。此外,我们对手写数字分类数据集进行了函数回归实验,以证明我们的理论分析是正确的。
摘要。在Exascale计算时代,具有前所未有的计算能力的机器可用。使这些大规模平行的机器有效地使用了数百万个核心,提出了一个新的挑战。需要多级和多维并行性来满足这种挑战。粗粒分量并发性提供了一个差异的并行性维度,该维度通常使用了通常使用的并行化方法,例如域分解和循环级别的共享内存方法。虽然这些主教化方法是数据并行技术,并且它们分解了数据空间,但组件并发是一种函数并行技术,并且分解了算法MIC空间。并行性的额外维度使我们能够将可扩展性扩展到由已建立的并行化技术设置的限制之外。,当通过添加组件(例如生物地球化学或冰盖模型)增加模型复杂性时,它还提供了一种方法来提高性能(通过使用更多的计算功率)。此外,货币允许每个组件在不同的硬件上运行,从而利用异质硬件配置的使用。在这项工作中,我们研究了组件并发的特征,并在一般文本中分析其行为。分析表明,组件并发构成“并行工作负载”,从而在某些条件下提高了可扩展性。这些通用考虑是
摘要:模拟分子的响应特性对于解释实验光谱和加速材料设计至关重要。然而,对于传统计算机上的电子结构方法来说,这仍然是一个长期存在的计算挑战。虽然量子计算机有望在长期内更有效地解决这一问题,但现有的需要深度量子电路的量子算法对于近期的噪声量子处理器来说是不可行的。在此,我们引入了一种用于响应特性的实用变分量子响应 (VQR) 算法,从而无需深度量子电路。利用该算法,我们报告了在超导量子处理器上首次模拟分子的线性响应特性,包括动态极化率和吸收光谱。我们的结果表明,使用该算法结合合适的误差缓解技术,一大类重要的动态特性,如格林函数,在近期的量子硬件范围内。