这项研究得到了日本科学技术振兴机构 (JST) 战略基础研究促进计划 CREST“用于长 DNA 合成和自主人工细胞创建的人工细胞反应器系统”研究领域 (编号 JPMJCR19S4)、GteX“大规模并行蛋白质打印机系统的开发”研究领域 (编号 JPMJGX23B1)、ASPIRE“日英合作开发人工光合细胞系统”(编号 JPMJAP24B5) 和科学研究补助金“Kikagaku S”(编号 JP19H05624) 的支持。 术语表(注1) 真核生物:具有细胞核并被核膜包围,且含有线粒体等细胞器的生物的统称。它们包括动物、植物和真菌,具有比原核生物更复杂的细胞结构。 (注2)内在无序蛋白质是在生理条件下不能形成三维结构的蛋白质,与酶等折叠成特定的三维结构才能发挥功能的蛋白质不同。分子间多样化的相互作用网络推动液-液相分离,形成称为凝聚层的液滴。 (注3)液-液相分离:均质液体混合物自发分离成两个具有不同成分的液相的现象。单一聚合物(如天然存在的变性蛋白质)可发生相分离,形成致密相和稀相,或者两种不同组成的致密相(如葡聚糖和聚乙二醇)。 (注4)肽标签:一种用于连接特定蛋白质的短氨基酸序列。通过将DNA序列遗传整合到蛋白质中,可以很容易地将其添加到蛋白质中。本研究中使用的肽标签具有拉链式结构,使得它们能够相互互锁并进行特定结合。另一方面,由于它几乎不与其他分子或蛋白质结合,因此可以利用这一特性选择性地将特定蛋白质结合在一起。在该系统中,一个肽标签附着在IDP上,另一个肽标签附着在要掺入IDP相的蛋白质上。 (注5)分子信标:用于检测特定DNA或RNA序列的核酸探针,具有包含荧光染料和猝灭剂的环状结构。在没有目标序列的情况下,荧光就不会出现,但一旦与序列结合,分子的形状就会发生变化,发出荧光并变得可检测。这可以实时确认样本中特定基因或 RNA 的存在。
为了满足围绕电池效率和环境可持续性的法规,汽车制造商必须在整个车辆的生活中保持高水平的电池健康。例如,加利福尼亚空气资源委员会提出了标准,该标准要求电动汽车至少在2030年保持10年或150,000英里的电动范围。这是对较小要求的最终结果,该要求早在2026年型,并在2031年以后的规定继续收紧法规。类似的标准已经在世界各地生效,因此需要在BMS内进行更先进和集成的解决方案,以提高感应精度。在本文中,我将展示集成的高压电阻分隔器如何提供与离散电阻链相比,可以为电压衰减提供更精确,更高的方法,从而使BMS能够更好地平衡电池组并改善其寿命。
土地现场管理实践的分隔废物应用方法:(检查所有适用的施加)表面注入该最初申请之前该土地的主要用途是什么?(检查所有适用的)农业农场农场隔离垃圾生物植物森林其他人将在此拟议的土地地点进行以下做法?(检查所有适用的应用程序)施加隔离垃圾:Hauler土地所有者其他包含隔离废物(如果适用):Hauler土地所有者其他种植和收获农作物:Hahuler土地所有者在每个拟议的处置地点或场地的其他角或边界,必须在EGLE或当地卫生部门进行现场评估之前明确标记。指示方法。(检查所有应用的)柱子赌注橙色圆锥体标志植被其他植被其他是否存在该拟议的土地现有的农业排水瓷砖?是,如果“是”,请连接图表的副本,显示排水瓷砖在地点安装在何处以及主排放插座的位置。
摘要:生物矿化通过强化软组织为生物体提供承重和保护功能。将生物矿化原理以受控和自组织的方式转化为材料科学是非常可取的,但具有挑战性。自然系统的一个重要教训是,结晶可以通过区室化和模板化来控制。在这里,我们开发了一种结晶技术,该技术基于氧化石墨烯介导的区室化和模板化方解石纳米涂层的棱柱形生长,通过控制离子扩散到微区室中,从而产生多阶段、自组织的结晶,并代表了一种提供连续纳米涂层和增强聚合物表面在接触应力下的摩擦学性能的有效策略。本研究提供了一种自下而上的方法,使用非常基本的生物矿化原理来保护聚合物表面,这对于生物医学应用和以可持续的方式制造高性能功能材料很有意义。■ 简介
分数-N频率合成器的设计已成为流行的研究领域。分数-N频率合成器已被广泛,成功地用于需要高精度频率源的范围,例如全球导航卫星系统(GNSS)RF接收器,高精度基站和手机RF收发器芯片等。作为分数-N频率合成器的关键组成部分,频率分隔线提出了更高的要求。因此,高功耗速度和低功耗分数分隔器是高度想要的[1,2,2,3,4,5,6,7,8,9,11,11,11,11,12,13,13,14,15,15,16,17,18,18,19,20]。脉冲吞咽频率分隔线的工作速度限制取决于MC信号(τmc)的延迟时间[1,2,3,20,21,22,23,24,25,26]。在[1]中,采用了d频流以延迟MC,以减少τmc。虽然这种结构固有地具有一个不需要的分裂比例,因为MC信号的集合和重置是由不同的信号触发的。为了解决此问题,在[2,3]中的一个信号触发了MC信号。但是,这两个架构分别导致SR闩锁的可能性不良,并分别增加τmc。在[21,22]中删除了SR闩锁,以避免[2]中提到的问题。此外,所有其他问题,也列出为:保留MC方案,依赖模量的分隔线延迟,操作速度,外部脉冲生成电路和MC信号延迟误差,也被克服了这两个文献。尽管如此,电路的复杂性和功率耗散
高速和宽频频率分隔线被广泛用于正交信号生成[1,2],时间间隔的THA和ADC系统[3,4,5],以及其他高速通信[6]。到目前为止,已经报告了基于不同拓扑和过程的许多分隔线。尤其是INP DHBT具有更高的击穿电压和相同尺寸的设备的频率性能更好[7,8],这意味着INP DHBT是高速分隔电路的更好选择。但是,电路的工作频率范围不会超过与设备过程相关的切割频率f t的一部分[9],这是电流模式逻辑(CML)划分器的工作频率[9,10]。为了提高分隔电路的高频电量,应提高效率以增加具有相同f t的设备的工作频率的利用。已经发表了许多增强技术,以扩展频率分隔符的工作频率范围,例如电感峰[9、11、12、13],分裂固定载荷[14、15、16],不对称闩锁[17],动态频率
2.0 第一阶段工作计划 ................................................................ 2-I 2.1 第一阶段的目的 ................................................................ 2-1 2.2 任务描述 ................................................................ 2-2 2.2.1 任务 I - 湿地划定 ........................................................ 2-2 2.2.2 垃圾场划定 ............................................................. 2-2 2.2.3 垃圾场特征描述 ............................................................. 2-3 2.2.4 垃圾场详图描述 ............................................................. 2-5 2.2.5 支持计划 ............................................................. 2-5 2.3 报告 ............................................................................. 2-6 2.3.1 湿地 ............................................................................. 2-6 2.3.2 垃圾场初步特征描述 ............................................................. 2-6 2.3.3 第一阶段环境场地评估 ............................................................. 2-6 2.3.4 第二阶段工作计划 ............................................................. 2-6