精加工(MAF)用于对DED生产的金属零件进行后处理。评估的参数是表面特性(直线度、粗糙度、微观结构和残余应力)和工艺输出变量(材料去除率、加工时间、切削力和比能)。结果表明,组合后处理链可以改善零件的形状误差和表面质量
摘要:混合制造机床通过在同一台机床上结合增材制造 (AM) 和减材制造 (SM) 工艺,具有革新制造业的巨大潜力。从 AM 到 SM 时可能出现的一个突出问题是,SM 工艺刀具路径没有考虑由前一个 AM 步骤引起的几何差异,这会导致生产时间增加和刀具磨损,尤其是在使用基于线的定向能量沉积 (DED) 作为 AM 工艺时。本文讨论了一种使用机上接触探测近似零件表面拓扑并使用表面拓扑近似制定优化 SM 刀具路径的方法。使用了三种不同的几何表面近似:三角形、梯形和两者的混合。使用每种几何近似创建 SM 刀具路径,并根据三个目标进行评估:减少总加工时间、降低表面粗糙度和降低切削力。还研究了优化目标的不同优先级方案。确定在优化中产生最大改进的最佳曲面近似是混合曲面拓扑近似。此外,结果表明,当优先考虑加工时间或切削力优化目标时,其他优化目标的改进很小。
摘要:高速铣削是目前航空工业,特别是铝合金工业的重要技术之一。高速铣削与其他铣削技术的区别在于它可以选择切削参数——切层深度、进给量和切削速度,以同时保证高质量的加工表面精度和高的加工效率,从而缩短整体部件的制造过程。通过实施高速铣削技术,可以从全量的原材料中制造出非常复杂的整体薄壁航空部件。目前,飞机结构设计主要由整体件组成,这些整体件是通过在生产过程中使用焊接或铆接技术将零部件连接起来而制成的,例如肋骨、纵梁、大梁、框架、机身盖和机翼等部件都可以归类为整体件。这些部件在铣削后组装成更大的组件。所用处理的主要目的除了确保功能标准外,还在于获得最佳的强度与结构重量比。使用高铣削速度可以通过减少加工时间来经济地制造整体部件,但它也可以提高加工表面的质量。这是因为高切削速度下的切削力明显较低。
激光金属沉积 (LMD) 是一种增材制造工艺,在制造和修复复杂功能部件方面表现出色。然而,为了提高表面质量和材料性能,生产的部件需要传统的机加工操作。由于样品在构建过程中受到高度局部的热输入,生产的部件中可能会出现局部材料性能的显著变化。这可能会影响 LMD 工艺生产的部件的可加工性。本研究旨在研究铣削工艺及其对 LMD 工艺生产的 Ti-6Al-4V 部件的表面完整性的影响。进行热处理是为了使材料的微观结构均匀化。以传统的 Ti-6Al-4V 作为参考材料样品。根据切削工艺参数,加工后的 LMD 部件的切削力和表面粗糙度分别比传统样品高 10-40% 和 18-65%。加工后的 LMD 样品中的压缩残余应力比传统样品高 11-30%。这些差异与测试部件之间的微观结构和晶粒尺寸差异有关。© 2020 作者。由 Elsevier BV 出版 这是一篇根据 CC BY-NC-ND 许可开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)由第五届 CIRP CSI 2020 科学委员会负责同行评审
摘要:在土方机械上应用斜切刀式无斗底卸转子,与推土机、平地机等广泛使用的机械相比,可显著提高土方机械在道路施工中的开挖量。给出了安装在无斗底卸转子上的斜切刀受力的载荷图。考虑了转子切刀逐层开挖土壤时,由于转子沿直线轨迹旋转运动和端部进给,切割元件在空间中产生的复杂运动,力的作用。获得了直线端部进给下无斗底卸转子单个斜切刀挖掘力分量的依赖关系。安装在土方机械框架上的斜切刀式无斗底卸转子直线运动,不仅可以通过无斗底卸转子的转速增加其输出,还可以挖掘现有土方机械无法挖掘的高硬度土壤。关键词:无膛线转子 下部卸载 斜切削 切削力 斜切削刀 1. 引言
1) Y. Kakinuma 等人:使用 La 掺杂 CeO 2 浆料对光学玻璃镜片进行超精密磨削,CIRP Annals,68,1 (2019) 345-348。2) S. Fujii 等人:全精密加工制造超高 Q 值晶体光学微谐振器,Optica,7,6 (2020) 694-701。3) T. Kuriya 等人:Inconel 718 定向能量沉积的凝固时间和孔隙率之间的关系先进制造技术特刊,JAMDSM,12,5 (2018) JAMDSM0104。4) M. Ueda 等人:用于快速制造的 DED(定向能量沉积)的智能工艺规划和控制,JAMDSM,14, 1 (2020) JAMSDSM0015。5) S. Sakata 等人:通过基于观察者的切削力估算避免不等齿距角平行车削中的颤动,制造科学与工程杂志 140,4 (2018) 044501。6) S. Kato 等人:利用新结构材料的节能机床的热位移和节能性能评估,日本机械工程师学会期刊,(2020 年)。 doi.org/10. 1299/transjsme.20-00002 7) K. Itoh 等人:通过 EHD 图案化开发电粘附微柱阵列,智能材料和结构,28(2019)034003。
人工智能 (AI) 和机器学习 (ML) 代表了计算机科学和数据处理系统的重要发展,可用于增强几乎所有技术支持的服务、产品和工业应用。人工智能和计算机科学的一个子领域称为机器学习,其专注于使用数据和算法来模拟机器的学习过程并提高系统的准确性。机器学习系统可应用于 CNC 机床的切削力和切削刀具磨损预测,以延长加工操作期间的切削刀具寿命。可以使用先进的机器学习系统获得 CNC 加工操作的优化加工参数,以提高零件制造过程的效率。此外,可以使用先进的机器学习系统预测和改进加工部件的表面质量,以提高加工零件的质量。为了分析和最小化 CNC 加工操作期间的功耗,机器学习被应用于 CNC 机床能耗的预测技术。本文回顾了机器学习和人工智能系统在数控机床中的应用,并推荐了未来的研究工作,以概述当前在数控加工过程中机器学习和人工智能方法的研究。因此,可以通过回顾和分析已发表论文中的最新成果来推动研究领域的发展,从而为人工智能和机器学习在数控机床中的应用提供创新的概念和方法。
铣削是使用多齿切削刀具(称为铣刀,切削刃称为齿)来产生平面和复杂形状的过程。与已有数千年历史的车床不同,铣床的历史还不到两百年。由于它们需要比手动车床多得多的功率,因此它们的引入必须等待工业水力和蒸汽动力的发明。此外,必须首先提供所有机械部件,例如精确配合的滑轨、抵抗切削力的大型铸件、校准的丝杠和硬化钢切削工具。伊莱·惠特尼 (Eli Whitney) 于 1818 年左右发明了第一台铣床,但约瑟夫·A·布朗(后来加入布朗和夏普)的万能铣床的膝部和立柱支撑装置可追溯到 1862 年,标志着机器发展的重要一步。在十九世纪下半叶,铣床逐渐取代了刨床和刨刨机,后者具有车床式的单点刀头,可在工件上直线移动,每次刮削金属。铣床具有连续切削功能,不仅比刨床和刨刨机更快地去除金属,而且还可执行其他操作,例如切割齿轮和麻花钻的螺旋线。如今,铣床的数量远远超过刨床和刨刨机。新英格兰和后来中西部的美国人不断添加功能,最终形成了现代铣床。
铣削是使用多齿切削刀具(称为铣刀,切削刃称为齿)来生产平面和复杂形状的过程。与已有数千年历史的车床不同,铣床的历史还不到两百年。由于它们需要比手动车床多得多的功率,因此它们的引入必须等待工业水和蒸汽动力的发明。此外,必须首先提供所有机械部件,例如精确安装的滑轨、抵抗切削力的大型铸件、校准的丝杠和硬化钢切削工具。伊莱·惠特尼 (Eli Whitney) 于 1818 年左右发明了第一台铣床,但约瑟夫·A·惠特尼 (Joseph A. Whitney) 的万能铣床采用了膝部和立柱支撑结构。布朗 (Brown)(后来加入布朗和夏普公司)的发明可追溯到 1862 年,标志着机器发展的重要一步。在十九世纪下半叶,铣床逐渐取代了刨床和刨床,后者具有车床型单点刀头,可在工件上直线移动,一次刮掉金属。铣床具有连续切削作用,不仅比刨床和刨床更快地去除金属,还可以执行其他操作,例如切割齿轮和麻花钻的螺旋线。如今,铣床的数量远远超过刨床和刨床。新英格兰和后来中西部的美国人不断添加功能,最终发明了现代铣床。
摘要:定向能量沉积 (DED) 是金属增材制造 (AM) 中的关键工艺,具有创建功能梯度材料 (FGM) 的独特能力。FGM 凭借其性能优化、减少材料缺陷和解决连接问题等优势,在高价值行业中引起了极大关注。然而,后处理仍然是一个关键步骤,这表明需要进一步研究以了解 FGM 的可加工性。本文重点分析了基于不锈钢 316L (SAE 316L) 和 Inconel 718 的 FGM 的制造和加工特性。FGM 的制造从 100 wt.% 的 SAE 316L 开始,通过逐步增加 20 wt.% 的 Inconel 718 并同时减少 SAE 316L 来调整成分比。在 FGM 制造完成后,通过硬度测试、光学微观结构测量、能量色散光谱 (EDS) 和 X 射线衍射 (XRD) 全面分析了微观结构和机械性能。为了研究后处理方面,使用两种不同的铣削方法(向上和向下铣削)和加工路径(从 SAE 316L 向 Inconel 718,反之亦然)进行了端铣削实验。平均切削力在向上铣削时达到峰值 148.4 N,在向下铣削时降至 70.5 N,刀具磨损测量进一步提供了在使用 SAE 316L 和 Inconel 718 的 FGM 时最佳铣削方向的见解。