成簇的规律间隔短回文重复序列 (CRISPR)/CRISPR-Cas 系统彻底改变了基因编辑,可应用于治疗、诊断、农业和开发疾病模型。然而,CRISPR-Cas 存在脱靶效应——即在使用过程中导致基因组中出现非预期的遗传修饰。在这项工作中,我们提出了 crispr2vec:一种用于嵌入 CRISPR 单向导 RNA (sgRNA) 序列并预测脱靶切割的深度度量学习方法。给定一个固定的靶序列,我们表明我们学习到的嵌入可以忠实地表示潜在的脱靶。我们提出了一种专门针对 CRISPR 序列的新型三重采样策略,可提高嵌入的质量。我们表明,生成的嵌入可推广到不同的脱靶切割检测分析中。最后,我们证明了深度度量学习方法在预测脱靶切割方面的优势,与之前的文献相比,该方法在不同数据集上对可见和未可见的 sgRNA 进行交叉折叠验证。
摘要 - 绘制的Sparsifation是大量算法的基础,范围从剪切问题的近似算法到图形Laplacian中线性系统的求解器。以最强的形式“光谱尖峰”将边缘的数量减少到节点数量的接近线性,同时近似保留了图形的切割和光谱结构。Benczúr和Karger(Stoc'96)的突破性工作以及Spielman和Teng(Stoc'04)表明,在原始图的边缘数量中,Sparsifitation可以在接近线性的时间内最佳地完成Sparsifation。在这项工作中,我们证明了用于光谱尖峰及其许多应用的多项式量子加速。特别是,我们给出了一种量子算法,在给定带有n个节点和m边缘的加权图中,在sublinear时间e O(√mn/ϵ)中输出了对spectral sparsifier的经典描述。我们证明这对小数因素很紧张。The algorithm builds on a string of existing results, most notably sparsification algorithms by Spielman and Srivastava (STOC'08) and Koutis and Xu (TOPC'16), a spanner construction by Thorup and Zwick (STOC'01), a single-source shortest paths quantum algorithm by Dürr et al.(ICALP'04)和Christiani,Pagh和Thorup(Stoc'15)的有效的K-K-wise独立哈希结构。我们的算法意味着用于求解拉普拉斯系统的量子加速,并近似于一系列切割问题,例如切割和最稀少的切割。索引项 - Quantum Computing;量子算法;图理论
摘要摘要©2020 Tongji University圆盘切割器的可靠性对隧道钻孔机(TBMS)的安全性和工作效率有重大影响。为了在不同的地质和操作条件下研究圆盘切割器的可靠性,我们使用不同的倾角和室内层进行了一系列新型的滚动切割测试,对完整和接头的砂岩块进行了一系列新型的滚动切割测试。刀头头的不同正常力和旋转速度。然后提出了一种基于逻辑回归模型的新型可靠性估计方法,并分析了倾角,地层,正常力和旋转速度对圆盘切割器可靠性的影响。可靠性估计方法包括有关正常力和切割器磨损的数据采集,使用小波包装转换和相关分析提取特征,以及对逻辑回归模型的估计。为了获得每个频带的频谱和标准化的小波能量,我们通过小波数据包转换分解了正常力的时域。使用相关分析来确定对磨损损失敏感的特征频带。根据显着特征参数和磨损损失,建立了逻辑回归模型,以评估椎间盘切割器的可靠性。分析结果表明,岩石切割的最佳倾角为30°。在存在混合面和单个地面的情况下,椎间盘切割器的可靠性主要受TBM发掘和磨损损失的难度的影响。提高刀具上的正常力和旋转速度加剧磨损,从而降低了可靠性。此外,与Rabinowicz的公式相比,该建议的方法考虑了各种地质和操作条件,这使得拟议的方法更适用于估计椎间盘切割器的可靠性。
引言:钛合金,包括Ti-6Al-4V,具有良好的机械和化学性能,如高抗拉强度和韧性、优异的抗腐蚀和氧化性能、重量轻、耐极端温度、高强度重量比。因此,它们越来越多地应用于航空航天、航天器、汽车、生物医学、化工和石化、海上石油和天然气、海水淡化和发电行业[1-8]。为了克服在使用传统加工技术加工钛合金等超级合金时遇到的困难,工程车间采用了非常规技术。这些技术包括电火花加工 (EDM)、超声波加工 (USM)、磨料水射流加工 (AWJM) 和激光加工 (LM) [5, 9-10]。激光切割是一种使用激光切割材料的热切割工艺,通常用于工业制造应用。这是通过将高功率、相干、单色激光束(波长范围从紫外到红外)聚焦到工件表面来实现的。激光束的能量被工件吸收,导致聚焦点处材料的温度迅速升高。温度如此之高,以至于根据材料的特性和光束的强度,材料会熔化或蒸发,并可能发生化学转变,然后使用高压辅助气体去除[11- 19]。材料和机械部件的表面粗糙度在确定其加工性能方面起着重要作用
为了生产二维材料的纳米结构,通常使用自上而下的技术,例如光刻[6]、电子束光刻(EBL)[7]和离子束光刻[8]。最近观察到,使用电子或离子的光刻技术可能会导致二维材料的结构损伤[9]或增加抗蚀剂污染,而这些污染需要通过等离子清洗去除。[10]激光烧蚀是一种无抗蚀剂的一步式替代方法[11–13],但光学衍射极限阻碍了其在需要亚微米分辨率的场合使用。自下而上的技术,例如化学气相沉积和位置选择性生长[14,15],可实现可扩展性和高分辨率。然而,复杂器件结构的可重复制造和器件集成仍未解决。扫描探针光刻(SPL)包含一组纳米光刻技术,可实现需要超高分辨率的独特应用。 [16] SPL 的工作原理基于纳米探针和表面之间的各种物理和化学相互作用,并且已应用于 2D 材料的机械划痕、[17] 局部氧化、[18,19] 和浸笔工艺。[5] 具体来说,热扫描探针光刻 (t-SPL) 是一种新兴的直写方法,它使用加热的纳米尖端进行 2D 和 3D 减材/增材制造。[20–22] t-SPL 的图案创建是通过使用加热的纳米尖端连续压痕样品同时扫描样品来完成的。除了超快写入之外,还可以用冷尖端对样品进行成像,类似于传统的原子力显微镜 (AFM),从而实现闭环光刻和图案叠加。在这里,我们表明,通常应用于可升华聚合物的热机械压痕技术也允许直接切割 2D 材料。为此,我们在环境压力和温度下使用 t-SPL,通过加热的纳米尖端局部热机械切割 2D 材料的化学键。展示了单层 MoTe 2 的 20 纳米分辨率图案,以及它对其他 2D 材料(如 MoS 2 和 MoSe 2)的适用性。相对于 EBL,所提出的技术不需要高真空并可避免电子诱导损伤,因此可以非常经济高效的方式轻松实施,以制作高质量 2D 纳米结构的原型和制造。对于大多数应用,2D 材料的功能性纳米结构必须通过光刻技术进行图案化。在这里,我们开发了一种用于单层 2D 材料的一步光刻技术,也称为直接纳米切割,使用热机械压痕法,如图 1 a 所示。为此,我们将 2D 材料薄片直接转移到 50 纳米厚的可升华聚合物层上,该层由旋涂机制成,然后通过热机械压痕法进行图案化。
b'片上微型超级电容器(MSC)是最有前途的器件之一,可集成到微/纳米级电子设备中以提供足够的峰值功率和能量支持。然而,较低的工作电压和有限的能量密度极大地限制了它们更广泛的实际应用。在此,设计了基于Ti3C2TxMXene作为负极、活性炭作为正极的高压片上MSC,并通过一种新颖的切割喷涂法简单地制造了它。通过解决MXene的过度极化,单个非对称片上MSC可以在中性电解质(PVA / Na2SO4)中提供高达1.6V的电位窗口,并具有7.8 mF cm2的高面积电容(堆栈比电容为36.5 F cm3)和大大提高的能量密度3.5 mWh cm3在功率密度为100 mW cm3时,这远远高于其他片上储能产品。此外,MSC 表现出优异的容量保持率(10,000 次循环后仍保持 91.4%)。更重要的是,MSC 可以轻松扩大为硅晶片上串联和/或并联的高度集成阵列。显然,这项研究为开发用于片上电子产品和便携式设备的高压 MXene 基 MSC 开辟了新途径。'
摘要:在土方机械上应用斜切刀式无斗底卸转子,与推土机、平地机等广泛使用的机械相比,可显著提高土方机械在道路施工中的开挖量。给出了安装在无斗底卸转子上的斜切刀受力的载荷图。考虑了转子切刀逐层开挖土壤时,由于转子沿直线轨迹旋转运动和端部进给,切割元件在空间中产生的复杂运动,力的作用。获得了直线端部进给下无斗底卸转子单个斜切刀挖掘力分量的依赖关系。安装在土方机械框架上的斜切刀式无斗底卸转子直线运动,不仅可以通过无斗底卸转子的转速增加其输出,还可以挖掘现有土方机械无法挖掘的高硬度土壤。关键词:无膛线转子 下部卸载 斜切削 切削力 斜切削刀 1. 引言
图 3.1 台达 PLC………………...…………………………………………………………... 17 图 3.2 开关…………………………………………………………………………………... 22 图 3.3 部分输入类型…………………………………………………………………………. 23 图 3.4 输出设备………………………………………………………………………………. 24 图 3.5 PLC 连接……………………………………………………………………………. 24 图 3.6 旋转编码器……………………………………………………………………………… 27 图 3.7 接触器工作原理……………………………………………………………………………….. 29 图 3.8 VFD 电路……………………………………………………………………………………...... 31 图 4.1 主要设计框图…….………………………………………………………………… 34 图 4.2 功能框图……………………………………………………………………........ 34 图 4.3 机器流程图………………………………………………………………………… ... 36 图 4.4 电源电路…………..……………………………………………………………… 38 图 4.5 气缸气动回路…………………………………………………………………… 39 图 4.6 电机工作方向………………………………………………………………… 41 图 4.7 工作台和传送带运动……………………………………………………...…….. 41 图 4.8 不带工作台的石材切割机 2-D 视图………………………………………...... 43 图 4.9 控制回路…………………...………………………………………………………...... 44
CERATIZIT 集团正在整合四大全球领先品牌,以巩固和加强其对整个工程领域客户的支持。它们是 Cutting Solutions by CERATIZIT、KOMET、WNT 和 KLENK。这四个品牌被整合到 CERATIZIT UK & IRELAND Ltd 旗下,为客户带来了更大的利益,客户现在可以获得更广泛的产品、技术知识和客户支持。虽然这四个品牌各自都是各自领域的领导者,但结合起来,它们将客户支持和技术卓越提升到了新的水平。市场领先的高品质切削工具系列只是 CERATIZIT UK & IRELAND 成功的一部分,其客户受益于一流的专业知识、物流和客户服务。这为客户的日常业务带来了益处,因为它直接利用了技术销售工程师团队的知识,这些工程师对客户面临的问题有第一手的了解。这种产品、技术专长和服务的组合为每个客户提供了他们所需的支持,在正确的时间提供正确的工具和应用知识,使加工过程更加有效。