b'We考虑了确定有向图中的根和全局边缘和顶点连接性(以及计算相应切割)的基本问题。对于具有小整数功能的根(以及全局)边缘连接,我们给出了一种新的随机蒙特卡洛算法,该算法在时间\ xcb \ x9c o n 2中运行。对于根边连接性,这是第一个在密度高图高连续性方向上绑定的\ xe2 \ x84 \ xa6(n 3)时间上改进的算法。我们的结果依赖于采样的简单组合以及显得新颖的稀疏性,并且可能导致有向图连接问题的进一步权衡。我们将边缘连接想法扩展到有向图中的根和全局顶点连接。我们获得了\ xcb \ x9c o(nw/\ xcf \ xb5)中的根顶点连接的(1 + \ xcf \ xb5) - approximation,其中w是w是总顶点的重量的时间(假设Integral verterx werges flovex wevertex weivers apteral vertex weivers witteral wittex weivers w we特别地,这会产生一个\ xcb \ x9c o n 2 /\ xcf \ xb5时间随机算法的未加权图。这转化为\ xcb \ x9c o(\ xce \ xbanw)时间精确算法,其中\ xce \ xba是根的连接。我们以此为基础为全局顶点连接获得类似的范围。我们的结果补充了由于Gabow的工作[8]的1991年边缘连接性工作以及Nanongkai等人的最新工作,因此在低连通性方面的这些问题的已知结果。[23]和Forster等。[6]用于顶点连接。
荆瑞平,焦佩玲,陈建军,孟晓燕博士,吴晓,段永刚博士,尚凯,钱琳,孙杰教授 浙江大学医学院附属第一医院细胞生物学系和骨髓移植中心 杭州 310058,中国 电子邮件:sunj4@zju.edu.cn 荆瑞平,焦佩玲,陈建军,孟晓燕博士,吴晓,段永刚博士,尚凯,钱琳,孙杰教授 浙江大学血液学研究所 & 浙江省干细胞与免疫治疗工程实验室 杭州 310058,中国 荆瑞平,焦佩玲,陈建军,孟晓燕博士,吴晓,段永刚博士,尚凯,孙杰教授 浙江省系统与精准医学实验室 浙江大学医学中心 杭州 310058,中国 黄勇,高晓燕教授浙江省西湖大学生命科学学院杭州 310058 刘菁,尹文教授浙江大学生物医学工程与仪器科学学院生物医学工程教育部重点实验室杭州 310058
CRISPR/CAS9介导的基因组编辑技术引发了生物学研究的革命(Jinek等,2012)。cas9与指南RNA在精确的位置上切割DNA,并通过包括动物和植物在内的高层真核细胞中的非同源末端连接(NHEJ)途径有效地修复所得的双链断裂(DSB)。由于NHEJ的维修过程是容易出错的,因此结果结果主要是框架之外的事件。因此,CAS9主要被认为是一种高度效力的“敲除”工具,并深深地认为无法在没有重大修改的情况下形成框架基础转换。结果,框架内的基础变化必须依赖于脱氨酶介导的基础编辑器(Komor等,2016; Gaudelli等,2017),主要编辑工具(Anzalone等,2019)或通过同源指导性维修或NHEJ通过供体DNA模板的低效率融合。最近,越来越多的证据表明,NHEJ修复结果是非随机且可预测的(Shen等,2018; Allen等,2018; Chen等,2019)。的确,众所周知,即使在同一切割部位, +1/–1 bp indels也常常主导NHEJ修复结果。我们突然意识到
解决量子计算机上的组合优化问题自量子计算出现以来吸引了许多研究人员。最大k -cut问题是一个具有挑战性的组合优化问题,具有多种众所周知的优化公式。然而,其混合成分线性优化(MILO)制剂和混合整数半限定的操作配方都是为了解决的所有时间耗时。以经典和量子求解器的最新进展为动机,我们研究了二进制二次优化(BQO)配方和两个二次不受约束的二元式操作配方。首先,我们将BQO配方与Milo配方进行比较。此外,我们提出了一种算法,该算法将BQO公式的任何原始分数溶液转换为可行的二元溶液,其目标值至少与分数溶液的目标值一样好。最后,我们发现了提出的二次不受欢迎的二进制优化公式的紧密惩罚系数。
2。倒重复的palindrome也是一个向前和向后读取相同的序列,但是向前和向后的序列在互补的DNA链(即双链DNA)中发现,与GTATAC(GTATAC)(GTATAC是catatg互补的)。倒重复的回信更为普遍,并且比镜面的plindromes更为普遍,并且具有更大的生物学意义。
17, 5 (2020), 861。 5) Nobuhiro Sugimura,“工艺设计支持系统的现状与未来”,日本精密工程学会期刊,72, 2 (2006) 165。 6) E. Ueno 和 K. Nakamoto:多任务机床工艺规划支持系统的加工特征提案,日本机械工程师学会会刊,81,825 (2015) DOI:10.1299/transjsme.15-00108。7) Y. Inoue 和 K. Nakamoto:开发用于处理复杂加工操作的多任务机床 CAPP 系统,J. Adv. Mech. Design Syst. Manuf.,14,1 (2020) DOI:10.1299/jamdsm.2020jamdsm0006。8) S. Kobayashi:基于案例的推理的现状与前景,日本人工智能学会期刊,7,4 (1992) 559。 9)Tatsuya Nagano、Keiichi Shirase、Eiji Wakamatsu、Eiji Arai:基于案例推理的切削条件推理系统,日本精密工程学会期刊,67,9(2001)1485。 10) Tetsuya Asano、Ryo Tsukamoto、Keiichi Nakamoto:基于加工特征的案例推理工作设计支持系统开发研究,日本精密工程学会期刊,待发表。 11)O. Cicek、A. Abdulkadir、SS Lienkamp、T. Brox 和 O. Ronneberger,3d U-Net:从稀疏注释学习密集体积分割,arXiv preprint(2016)arXiv:1606.06650。12)M. Hashimoto 和 K. Nakamoto:基于模式识别和深度学习的模具加工工艺规划,J. Adv. Mech. Design Syst. Manuf.,已接受。
摘要 本研究介绍了 6 面模塑面板级芯片级封装 (PLCSP) 的设计、材料、工艺、组装和可靠性。重点介绍了在带有多个器件晶圆的大型临时面板上制造 PLCSP 的 RDL(重新分布层)。由于所有印刷电路板 (PCB) 面板都是矩形,因此一些器件晶圆被切成两块或更多块,以便充分利用面板。因此,产量非常高。由于所有工艺/设备都是 PCB 工艺/设备(不是半导体工艺/设备),因此这是一个非常低成本的工艺。制造 RDL 后,将晶圆从 PCB 面板上剥离。然后进行焊球安装,并从带有 RDL 的原始器件晶圆制造 6 面模塑 PLCSP。介绍了 PLCSP 的跌落测试和结果(包括故障分析)。 6 面模塑 PLCSP PCB 组件的热循环由非线性温度和时间相关有限元模拟执行。关键词 扇入封装、再分布层、6 面模塑面板级芯片级封装、切割晶圆和跌落测试。
受托人于 2018 年 6 月 22 日通过了一项康复计划,其中包含优先时间表和默认时间表。优先时间表包括取消 2019 年 2 月 28 日之后工作服务的未来福利累积,取消所有在 2019 年 2 月 28 日或之前未累积三十年或以上服务年限的参与者的三十 (30) 年退休福利,以及一系列 10 年年度缴费率增加(从 2018 年 3 月 1 日开始的接下来三年每年增加 2.8%,随后七年每年增加 3.0%)。所有参与雇主均同意此时间表。
确定由基于温度的复制品交换分子动力学(T-REMD)完成的最佳蛋白质构型用于使用蛋白质结合分析,这是准确描绘蛋白质在不同溶剂环境中的行为的重要过程,尤其是在确定蛋白质最佳结合位点以在蛋白质粘结剂和蛋白质蛋白质中使用的最佳结合位点。然而,该分析的完成(通过配置变化推出了顶部绑定位点)是一个多项式状态计算问题,即使在最快的超级计算机上,也可能需要多个小时来计算。在这项研究中,我们旨在确定图形切割是否提供近似溶液,最大问题可以用作一种方法,以在确定表面活性剂蛋白A(SP-A)顶部结合位点(SP-A)的顶部结合位点进行结合分析,以提供与T-REMD相似的结果。此外,我们使用实际量子处理器单元(QPU)在IFF技术的Polar+软件包中使用量子混合算法,使用模拟QPU或量子抽象的机器(QAM)在大型经典计算设备上实现Polar+的实现,并在经典的MaxCut Algorith上实施,以确定超级Commuthm ge grom computige of grow of SuperComputimant of SuperComputime,以确定超级计算机的范围。用于此问题的量子计算设备,甚至在经典设备上使用量子算法。这项研究发现,Polar+对MaxCut近似算法的经典实现或GROMACS T-REMD的使用提供了巨大的加速,并在其QPU和QAM实现中产生可行的结果。然而,使用图切割方法后,缺乏直接构型变化在SP-A的结构上产生的最终结合结果与GROMACS T-REMD产生的结合结果不同。因此,需要完成进一步的工作,以将基于量子的概率转换为基于各种噪声条件的配置更改,以更好地确定量子算法和量子设备在不久的将来可以提供的准确性优势。
。CC-BY 4.0 国际许可(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2020 年 12 月 7 日发布。;https://doi.org/10.1101/2020.12.06.413757 doi:bioRxiv 预印本