近年来,机载气象设备越来越受欢迎,各种类型的设备都被引入驾驶舱。尽管它们很有效,但它们并不总能处理所有与天气有关的事件,例如大风、湍流和风切变。本文研究了与飞行阶段和天气事件相关的死亡率。分析数据来自美国国家运输安全委员会 (NTSB) 和航空安全报告系统 (ASRS) 数据库。研究了与通用航空相关事故和事件相关的天气条件,以更好地了解各种与天气有关的事件中最常见的具体因素。这两个数据库产生了 30,877 起事故/事件记录。本研究根据 14 CFR 第 91 部分一般操作和飞行规则从 NTSB 数据库中审查了 17,325 起事故和事件,以确定哪些是由天气引起的。在整个调查过程中,共发生了 1,382 起与天气有关的事故和事件。死亡率最高的飞行阶段是机动和航路阶段(28%)。在总共 30,877 起事故/事件记录中,有 13,552 起报告在 ASRS 数据库中。其中 358 起与天气有关。航路 (52%) 是飞行过程中发生与天气有关的事故/事件最多的阶段。
近年来,机载气象设备越来越受欢迎,各种类型的设备都被引入驾驶舱。尽管它们很有效,但它们并不总能处理所有与天气有关的事件,例如大风、湍流和风切变。本文研究了与飞行阶段和天气事件相关的死亡率。分析数据来自美国国家运输安全委员会 (NTSB) 和航空安全报告系统 (ASRS) 数据库。调查了与通用航空相关事故和事件相关的天气条件,以更好地了解各种与天气有关的事件中最常见的具体因素。这两个数据库共计有 30,877 条事故/事件记录。本研究根据 14 CFR 第 91 部分《一般操作和飞行规则》审查了 NTSB 数据库中的 17,325 起事故和事件,以确定哪些事故和事件是由天气引起的。在整个调查过程中,共有 1,382 起与天气有关的事故和事件。死亡率最高的飞行阶段是机动和航程(28%)。在总共 30,877 起事故/事件记录中,有 13,552 份报告在 ASRS 数据库中。其中 358 起与天气有关。航程(52%)是发生与天气有关的事故/事件最多的飞行阶段。
20 世纪 80 年代中期,一系列与微下击暴流(强大的雷暴引起的下沉气流和发散性地面风切变)相关的商用飞机事故促使美国联邦航空管理局开发了终端多普勒气象雷达 (TDWR),为美国大型机场提供风切变检测和预警服务。林肯实验室的任务是开发 TDWR 原型以及所需的信号处理和模式识别算法,以提供高度可靠、全自动的风切变现象检测。该原型在科罗拉多州丹佛、密苏里州堪萨斯城和佛罗里达州奥兰多进行了 TDWR 运行演示。这些测试验证了 TDWR 概念的技术和操作可行性,并提供了有关风切变区域特征的宝贵数据,支持针对不同环境的检测算法优化。林肯实验室的 TDWR 原型活动促使美国联邦航空管理局从雷神公司采购了 45 台 TDWR。TDWR 网络在 20 世纪 90 年代全面部署,自 1994 年以来,美国没有发生过重大风切变相关事故。林肯实验室继续支持美国联邦航空管理局优化 TDWR 风切变检测算法的性能;现代化 TDWR 数据处理架构;并实施其他算法,包括雷暴跟踪和运动预测功能。
一、简介 商业航空旅行在美国政治经济中扮演着重要角色。商业客机最初是摇摇晃晃、用帆布包裹、用木头和电线包裹的装置,现在已经发展成为能够在几个小时内跨越浩瀚海洋的高性能喷气式飞机。每年有数百万付费乘客享受这种便捷安全的旅行方式带来的便利。事实上,美国运输统计局指出,2015 年乘坐商业航空公司的乘客人数接近 9 亿人次,创历史新高。这种相对安全的旅行环境是航空旅行行业吸取的许多教训的结果,这些教训往往以流血和无辜生命的损失为代价。商业航空的早期几乎没有监管或安全标准。制造商无需制造符合任何性能或安全要求的飞机。运营商无需执行任何严格的飞行计划。联邦空中交通管制 (ATC) 直到 1936 年才成立,距离第一次商业飞行已过去近 20 年。 [1] 在此期间,联邦政府开始对该行业实施规则和标准。这些法规提高了安全性和可靠性的标准。在本文中,我们介绍了公共承运人法规的历史。我们解释了定期商业航空服务的设计和运营标准与通用航空的不同之处以及原因。我们还详细介绍了导致这些规则实施的具体事故和事件。如今,现代商用飞机的设计和运营标准比通用航空飞机更为严格。商用客机需要事故调查硬件,如驾驶舱语音和飞行数据记录器。[2][3] 商用客机需要地形规避警告系统 [4]、空中防撞系统 [5] 和风切变探测系统。[6] 它们必须拥有比其他飞机更好的灭火系统 [7][8]、防火系统 [9] 和更好的机舱通风 [10]。它们必须由比普通飞机休息充分 [11] 和训练有素 [12] 的机组人员驾驶
I.简介 商业航空旅行在美国政治经济中发挥着重要作用。从摇摇晃晃、用帆布包裹、用木头和电线包裹的装置开始,商业客机已经发展成为能够在数小时内跨越浩瀚海洋的高性能喷气式飞机。每年有数百万付费乘客享受这种便捷安全的旅行方式带来的便利。事实上,美国运输统计局指出,2015 年有近 9 亿乘客乘坐商业航空公司出行,创历史新高。这种相对安全的旅行环境是航空旅行行业吸取的许多教训的结果,这些教训往往以流血和无辜生命的损失为代价。商业航空的早期几乎没有监管或安全标准。制造商无需制造满足任何性能或安全要求的飞机。运营商无需执行任何严格的飞行计划。联邦空中交通管制 (ATC) 直到 1936 年才出现,距离第一次商业飞行已过去近 20 年。[1] 在此期间,联邦政府开始对该行业实施规则和标准。这些法规提高了安全性和可靠性的标准。在本文中,我们介绍了公共承运人法规的历史。我们解释了定期商业航空服务的设计和运营标准与通用航空的不同之处和原因。我们还详细介绍了导致这些规则实施的具体事故和事件。如今,现代商用飞机的设计和运营标准比通用航空飞机更为严格。商用客机需要事故调查硬件,例如驾驶舱语音和飞行数据记录器。[2][3] 商用客机需要地形规避警告系统 [4]、空中防撞系统 [5] 和风切变探测系统。[6] 它们必须具有比其他飞机改进的灭火系统 [7][8]、防火系统 [9] 和更好的机舱通风 [10]。必须由休息充分 [11] 且训练有素 [12] 的机组人员驾驶
过去 50 年来,风洞已广泛应用于工业和研究领域。它们的规模和几何形状差异很大,有些大到足以容纳和测试小型飞机(例如 NASA、ATP 设施),而另一些则是用于校准小型传感器的微型气流发生器。但是,它们总是使用相同的基本技术和设计元素。同样,环境模拟器也在研究中得到广泛应用,例如在气候和行星研究中。在这里,它们在尺寸和配置上再次存在很大差异,但基本上由具有某种形式的温度控制的密封室组成 [Jensen 等人2008]。因此,在风洞和环境模拟器设计领域已成功应用了各种标准且通常是商业化的技术和施工技术。本章将概述其中一些技术和方法,以帮助研究人员或技术开发人员设计或使用环境风洞,同时也为这些研究领域的新手提供信息指南。环境模拟器和风洞的融合是基于实验室技术的自然演变,以满足重现自然界中特定物理条件的需求。虽然这种设施现在才刚刚得到充分开发,但它们有可能扩展到一个新的研究领域,这可能对我们了解气候做出重大贡献,并促进先进传感器技术的发展。本章将介绍设计和建造环境风洞的许多挑战,并提出可能的解决方案,重点放在极端陆地和火星行星条件上。此外,还将讨论许多不同的科学和工业应用。一般而言,环境风洞目前已用于测试和校准各种气象传感器,尤其是风流传感器(风速计)。风洞在土木工程和城镇规划中的应用正变得越来越普遍。在这里,通过风洞模拟和建模建筑物周围和建筑密集区域的气流可能有助于避免在大风或暴风雨期间产生高风切变和危险涡流。此类模拟还可以帮助设计和放置风力发电系统(例如风力涡轮机)。雷诺方程开发的形式化缩放定律允许进行测量,例如在较小规模的实验室风洞中,其产生与自然环境中产生的相同(或极其相似)的流动 [Monin 和 Yaglom