优势 o PSR 不需要在飞机上安装或操作应答器,从而可以检测和管理未装备/故障的飞机或不合作的飞机 1 o 如果需要显示天气,可以提供天气通道输出。 o 非常适合机场地面监视 弱点 o PSR 不提供身份 o 不提供高度 2 o 位置基于斜距测量而不是真实距离(这给多雷达跟踪系统带来一些困难) o 经常会报告假目标(地面车辆、天气、鸟类等) o 在存在地面和天气杂波的情况下检测性能较差,特别是对于与雷达切向的飞行 o 与二次监视雷达 (SSR) 相比价格昂贵 o 更新率在 4 到 12 秒之间(比典型的多点定位或 ADS-B 长) o 长距离性能需要高发射机功率 - 带来干扰和环境问题 o 系统的安装和维护成本非常高 o 系统需要最佳位置,视野开阔,雷达可见的地面杂波最少 o 由于方位角分辨率性能差,无法分辨相同范围内相似位置的两架飞机。
离散元法 (DEM) 是一种数值技术,用于模拟颗粒系统的行为并研究这些系统的颗粒尺度力学 1 。该方法使用显式时间积分来更新一系列时间步长中每个粒子在每个时间的位置和旋转,需要计算每个接触和每个时间步长的颗粒间接触力。接触运动和接触力之间明确、精确和稳健的关系对于 DEM 代码至关重要,迄今为止最常见的运动-力关系是线性摩擦接触。使用此模型,可以分别计算垂直于接触表面和切向的力分量。在时间 푡 + Δ 푡 时,两个粒子之间的法向(压缩)接触力 푓 n ,푡 +Δ 푡 仅仅是粒子理想轮廓的累积重叠 휁 푡 +Δ 푡 乘以法向接触刚度 푘 n 。在时间步长 Δ 푡 内发生的切向力变化 Δ 퐟 t 等于两个粒子在时间步长内的相对切向运动矢量 Δ 흃 乘以切向刚度 푘 t ,但累积切向力的大小 | 퐟 t ,푡 +Δ 푡 | 仅限于摩擦系数 휇 乘以法向力。这两个规则通常写为