图 1. 近尾流湍流强度分布 [1] ...................................................................................................... 2 图 2. 远尾流湍流强度分布 [2] ...................................................................................................... 3 图 3. 2.06 倍叶片直径处的相对湍流强度 [3] ...................................................................................... 4 图 4. 近尾流轴向速度云图(左)和切向速度云图(右) [4] ............................................................. 5 图 5. 2.5 倍涡轮机直径处的实验和 CFD(LES)湍流强度 [6] ............................................................. 6 图 6. CFD(LES)湍流图 7. 基本风洞示意图 ...................................................................................................................................... 8 图 8. 蜂窝类型 [7] ...................................................................................................................................... 11 图 9. 湍流减少因子 [10] ............................................................................................................................. 15 图 10. 用于模型风力涡轮机的 NACA 4412 叶片 ............................................................................................. 23 图 11. 模型风力涡轮机轮毂 .............................................................................................
基于抽象动力学系统(DS)的运动计划提供无碰撞运动,并具有闭环反应性,这要归功于它们的表达。它可以通过通过矩阵调制来重塑名义DS来确保障碍物不会渗透,该矩阵调制是使用连续可区分的障碍物表示构建的。然而,最新的方法可能会受到非凸障碍诱导的局部最小值,因此未能扩展到复杂的高维关节空间。另一方面,基于抽样的模型预测控制(MPC)技术在关节空间中提供了可行的无碰撞路径,但由于计算复杂性随着空间维度和地平线长度而生长,因此仅限于准反应性场景。为了通过移动的障碍物来控制杂乱的环境中的机器人,并在机器人的关节空间中产生可行且高度反应的无碰撞运动,我们提出了一种使用基于采样的MPC调节关节空间DS的方法。特别是,代表目标不受限制的关节空间运动的名义DS在局部扭曲了障碍物区分速度成分,该速度组件在障碍物周围导航机器人并避免局部微型摩擦。这种切向速度成分是由基于采样的MPC异步产生的无碰撞路径构成的。值得注意的是,不需要MPC不断运行,而只需要在检测到局部最小值时被激活。该方法在7-DOF机器人上的模拟和现实世界实验中得到了验证,该机器人证明了避免凹障碍的能力,同时在准静态和高度动态的混乱环境中保持局部吸引力的稳定性。