。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2023年10月12日。 https://doi.org/10.1101/2023.10.12.562082 doi:Biorxiv Preprint
。CC-BY-NC-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。
。CC-BY-NC-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。
基因表达的抽象调节是细胞生物学的重要组成部分。转录因子蛋白经常结合旋转启动位点上游的调节DNA序列,以促进RNA聚合酶的激活或抑制。研究实验室已经专门用于了解转录因子的转录调节网络,因为这些受调节的基因为宿主生物的生物学提供了重要的见解。各种体内和体外测定已被开发,以阐明转录调节网络。包括SELEX-SEQ和CHIP-SEQ在内的几种测定法捕获了结合DNA结合的转录因子,以确定首选的DNA结合序列,然后可以将其映射到宿主有机体的基因组以鉴定候选调节基因。在此方案中,我们描述了一种使用限制性核酸内切酶,保护,选择和放大式(REPSA)来确定兴趣转换因子的DNA结合序列的替代性迭代选择方法。与基于传统抗体的捕获方法相反,REPSA通过用IIS型限制性核酸内切酶来挑战结合反应来选择转录因子结合的DNA序列。耐裂解的DNA物种通过PCR扩增,然后用作下一轮REPSA的输入。重复此过程,直到通过凝胶电泳观察到受保护的DNA物种,这表明成功的REPSA实验。随后的REPSA选择的DNA的高通量测序以及伴随基序发现的epsa选择的DNA,可以使用扫描分析来确定转录因子共识结合序列和潜在的调节基因,并在确定生物体的转录调节网络方面提供了关键的第一个步骤。
摘要 成簇的规律间隔短回文重复序列 (CRISPR)/Cas9 是一种高效灵活的基因组编辑技术,具有从基因治疗到种群控制等众多潜在应用。一些拟议的应用涉及将 CRISPR/Cas9 内切酶整合到生物体的基因组中,这引发了对转基因个体可能有害影响的疑问。一个特别相关的例子是基于 CRISPR 的基因驱动,旨在改变整个种群的基因。此类驱动的性能在很大程度上取决于驱动携带者所经历的适应性成本,但人们对这些成本的大小和原因知之甚少。在这里,我们通过跟踪四种不同转基因构建体的等位基因频率来评估果蝇笼养种群中基因组 CRISPR/Cas9 表达的适应性效应,这使我们能够将 Cas9 的整合、表达和靶位活动造成的“直接”适应性成本与潜在的脱靶切割造成的适应性成本区分开来。使用最大似然框架,我们发现没有直接适应度成本但因脱靶效应而产生中等成本的模型最适合我们的笼状数据。与此一致,我们没有观察到具有 Cas9HF1(Cas9 的高保真版本)的构建体的适应度成本。我们进一步证明,在归巢驱动器中使用 Cas9HF1 代替标准 Cas9 可实现类似的驱动器转换效率。这些结果表明,基因驱动应使用高保真内切酶进行设计,并且可能对涉及 CRISPR 内切酶基因组整合的其他应用产生影响。
HR 比 NHEJ 慢得多,NHEJ 可以从 DSB 事件中拯救更多细胞。NHEJ 几乎不需要或根本不需要末端切除来直接重新连接 DSB 末端。相比之下,HR 需要短距离切除和长距离切除 DSB 以及供体来实施修复过程。此外,其他蛋白质也可能是 HR 修复途径的限制因素 [18, 19]。我们在此发现,在同时删除两个基因和整合多个片段期间,将 MRE11 与 CAS9 融合可提高 CFU 数量
成簇的规则间隔短回文重复序列 (CRISPR)/CRISPR 相关 (Cas) 系统通过使用 CRISPR RNA (crRNA) 引导入侵核酸的沉默,为细菌和古细菌提供针对病毒和质粒的适应性免疫。我们在此表明,在这些系统的一个子集中,与反式激活 crRNA (tracrRNA) 碱基配对的成熟 crRNA 形成双 RNA 结构,该结构指导 CRISPR 相关蛋白 Cas9 在靶 DNA 中引入双链 (ds) 断裂。在与 crRNA 引导序列互补的位点,Cas9 HNH 核酸酶结构域切割互补链,而 Cas9 RuvC 样结构域切割非互补链。当双 tracrRNA:crRNA 被设计为单 RNA 嵌合体时,它还会指导序列特异性 Cas9 dsDNA 切割。我们的研究揭示了一个使用双 RNA 进行位点特异性 DNA 切割的核酸内切酶家族,并强调了利用该系统进行 RNA 可编程基因组编辑的潜力。B
许多细菌对入侵的噬菌体或质粒具有 II 型免疫力,称为成簇的规律间隔短回文重复序列 (CRISPR)/CRISPR 相关 9 (Cas9) 系统,用于检测和降解外来 DNA 序列。Cas9 蛋白有两个负责双链断裂的核酸内切酶(分别称为 HNH 结构域,用于切割 DNA 双链的靶链,RuvC 结构域用于切割非靶链)和一个单向导 RNA (sgRNA) 结合结构域,其中 RNA 和靶 DNA 链是碱基配对的。三种工程化的单 Lys-to-Ala HNH 突变体(K810A、K848A 和 K855A)表现出对靶 DNA 链切割的增强的底物特异性。我们在本研究中报告,在野生型酶中,在 1mM EDTA 存在下,与催化位点相邻的含 Y836 环(包括 E827-D837)内的 D835、Y836 和 D837 具有无法表征的加宽 1 H 15 N NMR 共振,而环中其余残基具有不同程度的加宽 NMR 光谱。我们发现,野生型酶中的该环在分子动力学 (MD) 模拟期间表现出三种不同的构象,而三个 Lys-to-Ala 突变体
* 1 CIC nanoGUNE BRTA,西班牙圣塞瓦斯蒂安。 2 西班牙马德里拉蒙卡哈尔大学医院遗传学服务中心、IRYCIS 和罕见疾病生物医学研究中心 (CIBERER) 3 西班牙马德里国家生物技术中心 (CNB-CSIC) 分子和细胞生物学系和罕见疾病生物医学网络研究中心 (CIBERER-ISCIII)。 4 INGEMM,拉巴斯大学医院,CIBERER-ISCIII,马德里,西班牙。 5 晶体学研究实验室,IACT(CSIC-UGR),阿米拉,格拉纳达,西班牙 6 布鲁塞尔大学间生物信息学研究所,ULB-VUB,布鲁塞尔 1050,比利时 7 布鲁塞尔结构生物学,布鲁塞尔自由大学,布鲁塞尔 1050,比利时 8 结构生物学研究中心,VIB,布鲁塞尔 1050,比利时。 9 美国马萨诸塞州波士顿 02114 马萨诸塞州总医院基因组医学中心和病理学系 10 美国马萨诸塞州波士顿 02115 哈佛医学院病理学系 11 西班牙巴塞罗那 Integra Therapeutics SL。 12 西班牙巴塞罗那庞贝法布拉大学医学与生命科学系。