CMP 溶液在半导体技术高速公路中发挥着不可或缺的作用。它们是高密度集成电路生产中必不可少的一步。CMP 溶液是由许多成分组成的复杂分散体。这些胶体系统的生产和稳定性非常复杂且难以预测,因此必须在生产过程中甚至在最终发货之前对其进行监控。一些 CMP 悬浮液表现出独特的行为,它们受剪切和机械应力的影响,导致不可逆的聚集。这些低水平的聚集物通常会在晶圆加工过程中造成划痕,有时直到生产进行到很晚才被发现,从而给最终用户带来重大的经济损失。AccuSizer ® 在 CMP 浆料制造和使用的整个产品链中一直发挥着重要作用,并且将继续发挥重要作用。从原材料供应商、CMP 浆料制造商、浆料分销供应商、过滤器供应商到芯片制造商,Entegris 和 AccuSizer 50 多年来一直在积极检测和提供有关好浆料和坏浆料的信息。
书面答案指令1。应按照指示在Word文档或Excel文件中回答每个问题部分或子部分。分级器只会查看指示文件中的工作。a)在Word文档中,应在标记答案的框中输入答案。随着添加文本行,框将扩展。无需使用特殊字符或下标(尽管可以使用)。例如,可以将β1键入为beta_1(并且用于指示上标)。b)应输入Excel文档公式中。在划痕纸上或计算器上执行计算,然后在牢房中输入答案将无法获得全部信用。信用不需要单元格的格式或舍入。c)个别考试可以提供在整个考试中或单个项目中适用的其他指示。2。答案应仅限于集合的问题。3。在上传您的单词和Excel文件之前,应在文件名中保存和重命名您的五位数候选号码。4。在五分钟上传期到期之前,必须上传包含您答案的单词和Excel文件。
摘要 — 飞机目视检查或一般目视检查 (GVI) 旨在发现飞机外部和内部表面的损坏或异常,这些损坏或异常可能会影响飞机的运行、结构或飞行安全。目视检查是飞机维护、维修和大修 (MRO) 活动的一部分。专家进行质量检查以识别问题并确定要报告的类型和重要性。这个过程耗时、主观,并且因人而异。飞机在没有飞行许可的情况下停飞的时间意味着经济损失。这项工作的主要目标是利用深度学习和计算机视觉推进飞机外部缺陷检测的最新技术。我们研究如何提高凹痕检测的准确性。此外,我们还研究了新发现的缺陷类别,例如划痕。我们还计划证明有可能开发一个完整的系统,使用无人机获取的飞机图像自动对飞机外部进行目视检查。我们将使用深度神经网络来检测和分割缺陷区域。该系统将有助于消除人为错误造成的主观性,并缩短检查飞机所需的时间,从而为其安全、维护和运行带来好处。
超低频磁场 (ELF-MF) 通过诱导瞬时质膜孔/损伤显著增强细胞对甲氨蝶呤的吸收。与未接受 ELF-MF 处理的对照组相比,通过电磁诱导膜孔增强的甲氨蝶呤“剂量负荷”导致与正常对照组相似的结果,同时体外使用明显较小的治疗剂量。与 ELF-MF 一起使用时,大约 10% 的典型治疗剂量产生了类似的结果。ELF-MF 增加体外 PC12、THP-1 和 HeLa 增殖(对照组的 120%)。粘附细胞分析表明,与对照组相比,向诱导划痕损伤的迁移明显减少(24 小时内 20 毫米)。我们的结果表明 ELF-MF 在肿瘤治疗中发挥着重要作用,这开辟了一些新的和令人兴奋的可能性,包括使用较小治疗剂量的化疗药物和破坏肿瘤转移。© 2022 作者。由 Elsevier Inc. 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
重要安全信息——请阅读并遵守 • 作为全面记录检查程序的一部分,应由经过培训的人员按照 ANSI B30.10 中的时间表进行定期目视检查,以检查是否有裂纹、缺口、磨损、凿痕和变形。 • 对于在频繁负载循环或脉动负载中使用的吊钩,应定期用磁粉或染料渗透剂检查吊钩和螺纹。(注意:可能需要拆卸。) • 切勿使用喉口增大的吊钩,或其尖端偏离吊钩主体平面超过 10 度的吊钩,或以任何其他方式扭曲或弯曲的吊钩。注意:钩子尖端弯曲或磨损,闩锁将无法正常工作。 • 切勿使用磨损程度超出图 1 所示限度的吊钩。 • 停止使用有裂纹、缺口或凿痕的吊钩。如果有裂纹、缺口或划痕,应按照钩子的轮廓纵向打磨进行修复,前提是减小的尺寸在图 1 所示的范围内。• 切勿通过焊接、加热、燃烧或弯曲来修理、改装、返工或重塑钩子。•
目的:利用胃癌细胞株SGC7901和胃癌干细胞(CSC-G),探讨肿瘤干细胞在侵袭、转移及肿瘤血管生成中的作用。方法:RT-PCR和Western印迹法检测干细胞标志物(OCT4、SOX2、C-Myc、Klf4)的表达。体外球形克隆实验、平板克隆实验、Transwell迁移实验、Transwell侵袭实验、耐药实验、划痕迁移实验、环状形成实验检测其增殖、迁移、侵袭能力、L-OHP和5-FU抗性、血管生成,小鼠成瘤实验检测其致瘤能力。结果:与SGC7901相比,CSC-G中Oct4、Sox2、Klf4、CD44 mRNA表达显著增高,E-cadherin mRNA相对表达量低于SGC7901,而c-Myc表达量无显著变化。CSC-G的增殖、耐药、迁移、侵袭能力显著增高,小鼠成瘤能力也显著增高。结论:CSC-G的增殖、耐药、迁移、侵袭、成瘤能力显著高于SGC7901,CSC-G在增殖、迁移、侵袭、成瘤过程中发挥重要作用。
摘要 .目的 .三阴性乳腺癌(TNBC)是女性最常见的恶性、高度异质性肿瘤之一。miR-200c等微小RNA(miRNA)在包括TNBC在内的多种恶性肿瘤中发挥重要作用。但miRNA-200c在TNBC中的生物学作用尚不十分清楚。本研究探讨miR-200c在TNBC生长中的作用机制。方法 .采用逆转录定量聚合酶链式反应检测TNBC组织和TNBC细胞中miR-200c的表达。细胞计数试剂盒8(CCK-8)实验、划痕愈合实验和transwell实验分别观察miR-200c对TNBC细胞增殖、迁移和侵袭的影响。用Western印迹法检测上皮间质转化(EMT)标志物的表达。使用双荧光素酶报告基因检测来测试 ZEB2 是否是 miR-200c 的新靶点。结果。我们的结果表明 ZEB2 是 miR-200c 的新靶点,并且 ZEB2 通过 EMT 介导三阴性乳腺癌的转移。结论。miR-200c 通过靶向 ZEB2 来减弱 TNBC 细胞侵袭和 EMT。因此,我们的数据表明 miR-200c 可用于开发新的 TNBC 早期诊断和治疗策略。
摘要。表面缺陷检测在确保工业生产中的产品质量方面起着关键作用,因为裂纹,划痕和凹痕等缺陷会损害产品性能和耐用性。传统的检测方法,例如手动检查和非破坏性测试(NDT),受到效率低下,对人类专业知识的依赖以及对错误的易感性的限制,这限制了它们在大规模生产中的应用。随着人工智能的进步,深度学习模型,尤其是卷积神经网络(CNN)和经常性神经网络(RNN),已成为自动化表面缺陷检测的有前途的解决方案。本文从传统方法到现代深度学习技术开始,对表面缺陷检测技术进行了全面的综述。分析了每种方法的优点和局限性,突出了深度学习中的关键进步,包括最近的模型,例如更快的R-CNN,Cascade R-CNN和Yolov4。此外,还讨论了诸如处理复杂缺陷和改善现实世界环境中的检测准确性之类的挑战,以及未来研究的潜在方向。使用少量钢分类(FSC)数据集进行实验评估,证明了现代检测方法在工业应用中的有效性,从而提供了增强缺陷检测系统的见解。
抽象的可言位置被认为是最常发生的细胞DNA损伤,并且是自发产生的,也是由于化学或辐射对DNA的损害而产生的。与无碱性位点对DNA聚合酶的影响的丰富信息相反,这些病变与RNA聚合酶如何相互作用知之甚少。使用体外转录系统来确定无碱性位点和单链断裂对转板伸长的影响。DNA模板是构建的,其中包含来自两个不同启动子的独特位置放置在独特位置的单个障碍物或划痕,并由SP6和Escherichia coli RNA聚合酶转录。sp6 RNA聚体最初停滞在Abasic部位,随后,这些病变的有效旁路。大肠杆菌RNA聚合酶也绕过了无碱性位点。相比之下,在无碱性位点引起的单链破裂完全阻断了两个RNA聚合酶的进展。全长转录本的序列分析表明,SP6和大肠杆菌RNA聚合酶插入了原始的,即使不是精心抗拒的腺嘌呤残基与无碱性位点相反。这种FMDing表明,在转录水平上,无碱性位点在体内可能是高度诱变的。
电压门控钾通道在多种癌细胞(包括肺癌细胞)的细胞过程中发挥作用。我们前期鉴定并报道了一种来自印鼠客蚤唾液蛋白FS48,在HEK 293T细胞中检测时,其对K v 1.1-1.3通道表现出抑制活性。但FS48是否对表达K v 通道的癌细胞有抑制作用尚不清楚。本研究旨在通过膜片钳、MTT、划痕愈合、transwell、明胶酶谱、qRT-PCR和WB检测方法揭示FS48对K v 通道和NCI-H460人肺癌细胞的影响。结果表明,FS48虽然不能抑制NCI-H460细胞的增殖,但能以剂量依赖性方式有效抑制K v 电流、迁移和侵袭。此外,发现K v 1.1和K v 1.3 mRNA和蛋白质的表达显著降低。最后,FS48降低了MMP-9的mRNA水平,同时增加了TIMP-1的mRNA水平。本研究首次揭示了吸血节肢动物唾液衍生蛋白可以通过K v 通道抑制肿瘤细胞的生理活动。此外,FS48可以作为针对表达K v 通道的肿瘤细胞的靶向化合物。