《视觉思维》,Michele Emmer 编辑,1993 年 《列奥纳多年鉴》,Craig Harris 编辑,1994 年 《设计信息技术》,Richard Coyne,1995 年 《沉浸在技术中:艺术与虚拟环境》,Mary Anne Moser 与 Douglas MacLeod 编辑,1996 年 《技术浪漫主义:数字叙事、整体论和现实的浪漫》,Richard Coyne,1999 年 《艺术与创新:施乐 PARC 艺术家驻留计划》,Craig Harris 编辑,1999 年 《数字辩证法:新媒体新论文集》,Peter Lunenfeld 编辑,1999 年 《花园中的机器人:互联网时代的远程机器人学和远程认识论》,Ken Goldberg 编辑,2000 年 《新媒体语言》,Lev Manovich,2001 年 《金属与肉体:人类的进化:技术接管,Ollivier Dyens,2001 神秘网络:与虚拟知识分子的对话,Geert Lovink,2002 信息艺术:艺术、科学和技术的交汇点,Stephen Wilson,2002 虚拟艺术:从幻觉到沉浸,Oliver Grau,2003 女性、艺术和技术,由 Judy Malloy 编辑,2003 协议:权力下放后控制如何存在,Alexander R. Galloway,2004 远距离:互联网上艺术和激进主义的前兆,由 Annmarie Chandler 和 Norie Neumark 编辑,2005 视觉思维 II,由 Michele Emmer 编辑,2005 CODE:协作所有权和数字经济,由 Rishab Aiyer Ghosh 编辑,2005 全球基因组:生物技术、政治和文化,Eugene Thacker, 2005 媒体生态:
航空事实 ❚❚ 平均每三秒就会有一架飞机离开地球表面。❚❚ 从统计上讲,航空运输是最安全的交通方式。❚❚ 直升机最初实际上是由列奥纳多·达·芬奇于 1483 年构思出来的。❚❚ 一架波音 747 有 18 个轮子、一个螺旋楼梯,机翼上可以停放 45 辆汽车。❚❚ 在起飞功率下,流过一台波音 767-400ER 发动机的空气可以在七秒内给固特异飞艇充气。❚❚ 乘坐波音 767-400ER 从纽约飞往伦敦(约 5,580 公里)时,每位乘客大约需要 227 升燃油。相同体积的汽油只能推动一辆经济型汽车行驶该距离的一半。❚❚ 一架波音 747-400 有 600 万个零件,其中一半是紧固件。❚❚ 直升机在恶劣天气下飞行比固定翼飞机更安全,因为它们可以减速、悬停以及向后或侧向飞行。❚❚ 飞机的机长和副驾驶在飞行过程中总是吃不同的饭菜,以防其中一人生病。❚❚ 波音 747 上的每个引擎重近 4,300 公斤,成本约为 800 万美元,巡航时每分钟燃烧约 45.4 升燃料。总共四个引擎占整架 747 起飞时总重量的约 5%。❚❚ 平均而言,每小时有 61,000 人在美国上空飞行。❚❚ 无人驾驶飞行器 (UAV)(也称为遥控飞行器 [RPV] 或无人机系统 [UAS])是一种无需人类机组人员飞行的飞机,由地面控制站的人类机组人员驾驶。❚❚ 飞机后面的“白烟”实际上是水蒸气与废气的混合物;它被称为凝结尾迹或“尾迹”。水是燃烧的副产品。根据大气条件,尾迹每天都会出现在特定的高度。❚❚ 跑道是根据盛行风选择的,因为飞机通常或多或少地迎风起飞和降落。
机器人工程师希望设计出具有动物运动能力的步行机器人。然而,弥合工业环境与真实的非结构化世界之间的鸿沟仍然是一个挑战。要在现实世界中茁壮成长,机器人和动物一样,需要具有适应性强的物理结构和计算机算法。“机器人 Morti”是一款四足机器人,由马克斯·普朗克智能系统研究所的 Felix Ruppert 和 Alexander Badri-Spröwitz 博士开发 1 ,它学会使用两个类似于神经适应的反馈回路来使用腿部的被动动力学。机器人 Morti 的开发是一个令人兴奋的演示,展示了运动关键物理和算法组件的“类似动物”的适应性。它的关节具有生物启发的灵活性,同时使用数据驱动的分层控制算法来实现不同功能级别的短期和长期学习和适应。因此,Morti 是运动体现智能的一个例子,它通过调整身体的物理特性来减少能耗。就像刚出生的小马驹一样,机器人 Morti 经过约 1 小时的自我驱动试错训练后,可以在实验室环境中以合理的能量效率学会走路。看到最新的计算思维与生物学的基本原理(大脑和身体的共同适应)相结合的工作尤其令人鼓舞。传统机器人技术的方法和观点强调使用规定的计算机算法来控制刚体。相比之下,动物的神经回路和身体在物种层面上共同进化,在个体层面上共同适应,以达到令人羡慕的身体表现水平。受动物多才多艺的启发而制造机器的动力(图 1),以及将动物视为机器的相反想法,在 15 世纪列奥纳多·达芬奇和 16 世纪乔瓦尼·阿方索·博雷利的生物力学著作(和绘画)中已经明确表达出来。
• 助理教授(08/B2 结构力学部门非终身研究员初级职位)。研究活动侧重于材料和结构机械行为的建模。参考现有结构,研究对象是基于分布式传感器网络的监控技术,同时利用人工智能方法(神经网络)的最新进展。参考创新材料,研究活动侧重于开发新的数值技术进行设计优化,例如遗传算法和强化学习。从微观到宏观尺度的实验表征和模型验证的创新实验策略完善了活动范围。 • 米兰理工大学博士后研究员。资助:“用于 MEMS 中机械能转换和存储的超材料和超结构”,由米兰理工大学民用和环境工程部颁发,资助编号 198010,日期 2021 年 11 月 17 日,索引号10600。该资助由米兰理工大学和 ST Microelectronics 的 STEAM(先进材料传感器系统)联合研究中心资助。主要课题:强化学习在 MEMS 规模能量收集用分级超材料设计中的应用(2022 年至今)。• 结构和计算力学课程助教。硕士论文联合导师(2018 年至今)。• 与 Eurosilos Sirp srl 合作。主要课题:玻璃增强聚酯外壳的结构设计。研发合同:“GRP 筒仓的分析和优化”。合同负责人:R. Ardito 教授(2023 年)。• 与 Socotec 监测(法国)合作。主要课题:使用实验记录校准烟囱的结构模型的开发(2022 年)。• 米兰理工大学结构、地震和岩土工程博士候选人。主要主题:结合物理和基于数据的方法开发结构健康监测计算方法(2018-2022)。 • 在 Studio di Ingegneria Amigoni、Calolziocorte (LC) 实习。主要主题:监测列奥纳多达芬奇的《最后的晚餐》的结构稳定性,米兰圣玛利亚感恩教堂(2018 年)。海外经历:
代表组委会,我们欢迎您参加 2022 年 IEEE 航空航天计量国际研讨会 (MetroAeroSpace)。自第一届以来,MetroAeroSpace 就代表了航空航天测量和仪器仪表领域研究领域的国际会议场所,让机构和学术界参与讨论需要测量、仪器仪表和工业测试专家(通常是专业工程师)和创新计量专家(通常是学者)共同解决的最新问题。越来越多的科学家参加 MetroAeroSpace,他们来自与工程领域相距甚远的领域,这导致了研讨会的积极融合。由于 COVID-19 疫情,2020 年第 7 届 MetroAeroSpace 未在比萨举行,组委会努力准备了一次虚拟会议。今年,第 9 届 MetroAeroSpace 回到比萨,在比萨大学的赞助下在“Centro Congressi Le Benedettine”举办。因此,我们非常高兴地欢迎您来到历史悠久、风景优美的比萨。比萨的根源可以追溯到过去。伊特鲁里亚人和古罗马人都曾在那里生活过,并留下了考古遗迹。比萨是中世纪著名的海上共和国。它是数学家列奥纳多·斐波那契的城市,后来,它也是创立实验方法的伽利略·伽利莱的城市。伽利略的一句名言是:“测量可测量的,使不可测量的可测量”。我们相信您可以加入这一引文的精神,向航空航天计量学的新挑战和发展迈进。我们认为所有这些都使比萨成为 2022 年 MetroAeroSpace 会议的理想举办地,我们希望我们的与会者能够享受这次会议、这座城市及其周边环境!第 9 届会议将继续追求过去几年开始的最新技术和实践。会议将重点关注航空航天工业的计量辅助生产新技术、飞机部件测量、航空航天传感器和相关信号调节以及航空航天电子测试和测量的校准方法,但不限于此。由于我们的研究和应用领域受到广泛关注且日益增长,因此组织 MetroAeroSpace 会议是一项具有挑战性的任务。需要许多人的努力来制定技术计划、安排住宿、管理行政事务和建立社交功能。我们想借此机会感谢所有人。我们还要感谢以不同方式支持会议的公共和私人组织。特别感谢 Athena Srl 在会议的许多复杂细节中提供的日常合作和宝贵支持。MetroAeroSpace 技术计划包括三个主题演讲,三天内安排了 24 场口头会议、2 场海报会议、5 场讲座和 2 场平行活动。口头会议
摘要 可持续太空探索需要改进原位资源利用 (ISRU) 技术,特别是利用当地资源生产机器人和人类探索所必需的产品。利用当地资源(如水)的能力不仅可以解决从地球运输物资的后勤挑战,还可以显著降低与太空任务相关的成本。水被列奥纳多达芬奇视为自然的驱动力,是太空探索的关键资源。作为宇航员的消耗品、辐射屏蔽以及电解成氢和氧(一种高效的火箭推进剂组合)描述了它的多种应用。然而,原位水提取在技术上仍然具有挑战性,需要进一步开发。LUWEX 项目通过开发和验证完整的原位水工艺链(包括提取、净化和质量监测)来应对这一挑战。它设想利用月球风化层中的水来推进并供宇航员饮用,从而实现可持续的太空探索。该综合测试装置使用热真空室内的冰冷月球尘埃模拟物模拟月球条件,旨在将整个流程链的技术就绪水平 (TRL) 从 2 级和 3 级提升到 4 级(即功能验证),一些子系统甚至可达到 TRL 5(即在相关环境中进行验证)。本文讨论了该项目的目标和相应的方法,强调了先进的水提取、捕获、净化和质量监测技术的开发和验证。通过这些技术,LUWEX 寻求为未来由欧洲主导的太空探索任务贡献创新的月球水提取和净化系统。本文概述了系统设计,并详细介绍了项目的技术发展路线图,阐述了 LUWEX 对未来探索任务的适应性,强调了其预计的潜力和长期目标,并概述了潜在的地面应用策略。转向可持续实践增强了我们执行长期任务的能力,最大限度地减少了对地球资源的依赖,从而提高了太空探索的可行性和可负担性。关键词:原位资源利用 (ISRU)、月球水提取、可持续技术、月球风化层、水净化 1. 简介 1.1 背景和动机 长期载人月球探索需要原位资源利用 (ISRU),以通过最大限度地减少质量、成本和风险来增强未来任务的能力 [1] ISRU 技术旨在利用本地资源为机器人和人类任务生产必需产品,
* 加州西部法学院副教授;加州大学圣地亚哥分校客座副教授;印第安纳大学(布卢明顿)奥斯特罗姆访问学者;内布拉斯加大学(林肯)访问学者:内布拉斯加州治理与技术中心;乔治梅森大学安东宁斯卡利亚法学院托马斯爱迪生创新研究员和列奥纳多达芬奇研究员;加州大学洛杉矶分校法学院访问学者;美国注册专利律师;西北大学普利兹克法学院法学博士;西北大学凯洛格管理学院工商管理硕士;休斯顿大学法学院法学硕士;斯坦福大学商学院研究生创业证书;斯坦福大学工程学院机械工程硕士;德克萨斯大学奥斯汀分校科克雷尔工程学院机械工程学士。非常感谢 Michael Risch、Ted Sichelman、Brenda Simon、Thomas D. Barton、Robert A. Bohrer、Shawn Miller、Lisa Ramsey、Anjanette Raymond、Daniel R. Cahoy、Sonia Katyal、Tejas Narechania、Jonathan Barnett、Eric Claeys、John Duffy、Sean O'Connor、Ashish Bharadwaj、Loletta Dardin、Charles Delmotte、H. Tomás Gómez-Arostegui、Taorui Guan、Devlin Hartline、Christa Laser、Daryl Lim、Kevin Madigan、Talha Syed、James Stern、Seth C. Oranburg、Agnieszka McPeak、Gregory Day、Nicole Iannarone、Emily Loza de Siles、Eric C. Chaffee、Robert F. Kravetz、Ashley London、Aman Gebru、Elizabeth I. Winston、A. Michael Froomkin、Mason Marks、Larry DiMatteo、Robert W. Emerson、Robert E. Thomas、Colleen M. Baker、Lawrence Trautman、George Cameron、David Orozco、Thomas Freeman、Christopher Guzelian、Daniel Herron、Michelle Romero、Tyler Smith、Brian Haney、Jihwang Yeo、Sikander Khan、Erica Pascal、Ryan Hsu、Kevin R. Tamm 和 Daniel R. Peterson。感谢以下论坛展示本文并感谢参与者的真知灼见:佛罗里达大学沃灵顿商学院 2020 年 Huber Hurst 研究研讨会、杜肯大学法学院初级 #FutureLaw 研讨会 4.0、印第安纳大学(布卢明顿)奥斯特罗姆研讨会系列座谈会、乔治华盛顿大学法学院初级知识产权学者协会 (JIPSA)、迈阿密大学法学院 2019 年 We Robot 大会、堪萨斯大学法学院 PatCon 9(年度专利会议)以及圣地亚哥大学法学院第 9 届年度专利法会议。感谢商业法律研究学院 (ALSB) 跨学科部门在 2020 年 ALSB 年会上将本文评为首届“最佳论文奖”,并感谢 ALSB 成员的真知灼见。
* 加州西部法学院副教授;加州大学圣地亚哥分校客座副教授;印第安纳大学(布卢明顿)奥斯特罗姆访问学者;内布拉斯加大学(林肯)访问学者:内布拉斯加州治理与技术中心;乔治梅森大学安东宁斯卡利亚法学院托马斯爱迪生创新研究员和列奥纳多达芬奇研究员;加州大学洛杉矶分校法学院访问学者;美国注册专利律师;西北大学普利兹克法学院法学博士;西北大学凯洛格管理学院工商管理硕士;休斯顿大学法学院法学硕士;斯坦福大学商学院研究生创业证书;斯坦福大学工程学院机械工程硕士;德克萨斯大学奥斯汀分校科克雷尔工程学院机械工程学士。非常感谢 Michael Risch、Ted Sichelman、Brenda Simon、Thomas D. Barton、Robert A. Bohrer、Shawn Miller、Lisa Ramsey、Anjanette Raymond、Daniel R. Cahoy、Sonia Katyal、Tejas Narechania、Jonathan Barnett、Eric Claeys、John Duffy、Sean O'Connor、Ashish Bharadwaj、Loletta Dardin、Charles Delmotte、H. Tomás Gómez-Arostegui、Taorui Guan、Devlin Hartline、Christa Laser、Daryl Lim、Kevin Madigan、Talha Syed、James Stern、Seth C. Oranburg、Agnieszka McPeak、Gregory Day、Nicole Iannarone、Emily Loza de Siles、Eric C. Chaffee、Robert F. Kravetz、Ashley London、Aman Gebru、Elizabeth I. Winston、A. Michael Froomkin、Mason Marks、Larry DiMatteo、Robert W. Emerson、Robert E. Thomas、Colleen M. Baker、Lawrence Trautman、George Cameron、David Orozco、Thomas Freeman、Christopher Guzelian、Daniel Herron、Michelle Romero、Tyler Smith、Brian Haney、Jihwang Yeo、Sikander Khan、Erica Pascal、Ryan Hsu、Kevin R. Tamm 和 Daniel R. Peterson。感谢以下论坛展示本文并感谢参与者的真知灼见:佛罗里达大学沃灵顿商学院 2020 年 Huber Hurst 研究研讨会、杜肯大学法学院初级 #FutureLaw 研讨会 4.0、印第安纳大学(布卢明顿)奥斯特罗姆研讨会系列座谈会、乔治华盛顿大学法学院初级知识产权学者协会 (JIPSA)、迈阿密大学法学院 2019 年 We Robot 大会、堪萨斯大学法学院 PatCon 9(年度专利会议)以及圣地亚哥大学法学院第 9 届年度专利法会议。感谢商业法律研究学院 (ALSB) 跨学科部门在 2020 年 ALSB 年会上将本文评为首届“最佳论文奖”,并感谢 ALSB 成员的真知灼见。