电子邮件:jia_liu@seas.harvard.edu 学术任职 01/2019- 哈佛大学工程与应用科学学院生物工程助理教授 2015-2018 斯坦福大学化学工程与生物工程系博士后 2014-2015 哈佛大学化学与化学生物学系博士后研究员 教育经历 2009-2014 哈佛大学化学博士 2005-2009 复旦大学化学学士 奖项与荣誉 2022 被《麻省理工技术评论》评选为 35 岁以下发明家(全球名单) 2022 被《先进材料》评选为“新星”奖 2022 美国空军科学研究办公室 (AFOSR) 青年研究员计划 (YIP) 奖 2021 NIH/NIDDK 催化剂奖(DP1,主任先锋奖计划) 2021 2021 MRS 最佳研讨会演讲奖 2021 哈佛 SEAS LInc 教职员工奖学金 2020 威廉·F·米尔顿奖 2020 哈佛干细胞研究所种子基金奖 2019、2020 哈佛大学院长有前途奖学金竞争基金 2019 阿拉蒙特青年教师奖 2016 Springer 年度最佳论文奖 2016 入围 Burroughs Wellcome 基金、科学界面职业奖 2015 C&EN 评选的“注射器注射电子学”最显著化学研究进展 2015 科学美国人评选的“注射器注射电子学”十大改变世界的想法 2014 中国优秀留学生 2012 哈佛大学 Fieser 讲座奖 2009 个人科技创新学术奖学金 2007-2008 金惠君李政道奖学金 2008 埃克森美孚美孚奖学金 2005 年州冠军、全国高中化学奥林匹克学生奖项和荣誉 2021 年研究生 Paul Le Floch 入选福布斯 30 位 30 岁以下 | 2022 年科学榜单。 2021 年研究生 Paul Le Floch 在 2021 年 MRS 秋季会议上获得 MRS 研究生金奖。 2021 年研究生 Ariel Lee 获得 NSF 研究生奖学金。 2021 年研究生 Jaeyong Lee 获得 Kwanjeong 教育基金会颁发的 Kwanjeong 奖学金 2020 年研究生 Yichun He 获得哈佛大学艺术与科学研究生院颁发的 James Mills Piece 奖学金 2020 年本科生 Daniel Solomon 获得哈佛大学研究项目奖学金 2019 年研究生 Hao Sheng 获得研究生 Aramont 奖 2019 年本科生 Thomas Blum 获得达文波特学院 Richter 暑期奖学金
为销售而制造、销售、提供销售、引入或交付以引入商业或进口到加州的发动机必须对这些发动机进行认证,并获得 CARB 的行政命令 (EO)。发动机必须符合排放标准(通过直接标准或通过平均、储存和交易或“ABT”计划下的系列发动机级别或“FEL”),制造商还必须正确贴标、提供缺陷调查和报告,并根据车型年份 (MY) 和最大发动机功率进行生产发动机测试。制造商可以使用灵活配额生产部分加州指定生产量免于满足当前 MY 排放标准的设备和发动机,但必须满足通知、报告和标签要求。 (加州法规,第 13 条,§§ 2420-2427。)LSI 法规要求所有在加州制造、销售或提供销售的 LSI 发动机,或引入、交付或进口到加州以投入商业的 LSI 发动机均须遵守行政命令,表明发动机符合确定的废气排放标准;按照所有必需的测试程序进行了适当测试;包含排放控制标签;符合所有缺陷保修要求;并符合报告要求。(加州法规,第 13 条,§ 2430-2439。)
迁徙鱼与人类社会有着密切的联系。在Tocantins- Araguaia盆地中,一个以高生物多样性,原产性和环境退化为标志的地区,几乎没有关于这些鱼类的信息。在这种情况下,本研究调查了potamodomous鱼类的分类学和功能多样性,目的是编译第一个物种清单,并检查物种丰富度,组成和功能多样性的模式。根据Tocantins-Araguaia和Amazon盆地的鱼类多样性的最新文献分配了每个物种的迁徙状况。这项研究巩固了77种Potamodomous鱼类(三个订单,12个家庭和41个属)的清单,其中包括八个流行性,三个受到威胁和两个非本地物种。pimelodidae总结了大多数物种,其次是Serrasalmidae和Curimatidae。大多数物种被归类为培养基(42)和长距离(32)移民,很少进行大陆迁移(3)。大多数物种广泛分布在盆地中,导致物种丰富度,组成和功能多样性的空间变化很小。但是,特征组成在物种,家庭和迁徙量表之间各不相同。这是该盆地中迁徙鱼类的第一个广泛评估,有可能生成基本信息以支持渔业管理,环境规划和保护计划。
Chungsik Yoo 博士目前是韩国成均馆大学 (SKKU) 的土木、建筑工程和景观建筑学教授。他是国际土工合成材料学会 (IGS) 主席。Yoo 教授还积极参与国际土力学和岩土工程学会 (ISSMGE),担任 TC204 副主席,该技术委员会是“软土地基地下施工”。他曾担任国际隧道和地下空间协会 (ITA) 执行委员会成员和工作组 2 的发起人。Yoo 教授分别于 1989 年和 1993 年获得宾夕法尼亚州立大学土木工程硕士和博士学位。在美国 Mueser Rutledge 咨询工程师公司担任岩土工程师后,他回到韩国,并于 1994 年加入成均馆大学担任助理教授。此后,Yoo 教授继续担任成均馆大学的教授,并于 2014 年至 2016 年担任土木与建筑工程学院的讲座教授,并于 2017 年至 2018 年担任工程学院副院长。Yoo 教授合作撰写了 400 多篇技术论文,包括岩土工程和土工合成材料工程领域的 SCI 期刊论文和会议论文,包括基于实验室测试、数值建模和现场测试的隧道施工。他是国际土工合成材料学会 (IGS) 颁发的 2010 年 IGS 奖的获得者。 Yoo 教授还获得了韩国土木工程学会、韩国岩土工程学会、韩国隧道和地下空间协会以及韩国土工合成材料学会颁发的众多奖项,包括 2014 年韩国科学技术协会颁发的最佳科学和工程论文奖。目前,他是《土工织物和土工膜》的主编和《隧道和地下空间技术》的副主编。他还是《土工合成材料国际》、《计算机与岩土工程》、《交通岩土工程》和《地下空间》的编委会成员。Yoo 教授在许多国际活动中就土工合成材料和隧道相关主题发表了许多主题演讲,其中包括 WTC 2020、ICTG 2020、ISRM 2015、Eurogeo 6、Geosynthetics Asia 2016、IS-Sao Paulo 2017、Tunnelling Asia 2017、GeoMEAST 2017、GeoPERU 2017 等。
第三部分:法案概述 摘要:第 35 号众议院法案 (HB35) 将修订《石油和天然气法》以及《空气质量控制法》,以保护公众免受“儿童健康保护区”内石油和天然气作业污染的影响,“儿童健康保护区”定义为“距离学校地产线 5,280 英尺的区域”。该法案规定暂停未达到空气质量标准或未提交所需报告和计划的油井或生产设施(包括任何靠近学校的油井或生产设施)。拥有井口或生产设施的运营商必须制定年度报告,如果位于儿童健康保护区内,还必须制定泄漏检测响应计划。该法案没有规定生效日期。除非指定更晚的日期,法律将在颁布它们的立法机关休会后 90 天生效。如果颁布,该法案将于 2025 年 6 月 20 日生效。财政影响 HB32 不包含拨款。对于因不遵守该法案规定而必须暂停运营的石油和天然气设施运营商,可能会产生重大但不确定的财政影响。该法案规定,法院、能源、矿产和自然资源部石油保护处 (OCD) 或石油保护委员会 (OCC) 将对不遵守该法案规定的运营商评估民事处罚。对于每次违规,这些罚款最高可达每天 3 万美元。OCC 或 OCD 评估的此类罚款不得超过 20 万美元,但此限制不适用于法院评估的罚款。重大问题 该法案将“学校”定义为“小学、中学、初中、初中或高中,或上述学校的任何组合,包括公立学校、州立或地方特许学校或学生亲自就读的私立学校,包括日托中心,以及与学校相关的公园、游乐场或体育或娱乐设施。” 运营商的年度报告将包括运营商油井或生产设施附近任何儿童健康保护区内的学校地图和清单。 孩子们大部分时间都在学校度过,学校附近油气井的空气污染物可能会给新墨西哥州带来严重的公共卫生问题。 儿童面临更高的空气污染物暴露风险,因为他们的呼吸道很小且仍在发育,他们比成年人呼吸更快,吸入的空气更多,而且他们身体对感染的天然防御能力仍在发展。 2021 年的一项研究调查了上游石油和天然气生产对环境空气污染物的影响,距离水井两到四公里范围内污染物浓度明显较高。作者认为污染物
摘要:过渡金属氧化物(TMOS)是可安全和快速充电的电池的有前途的阳极材料,但是它们的高工作电势限制了能量密度。在这里,我们制定了一种抑制无序岩盐(DRS)Li 3 V 2 O 5(LVO)阳极的工作潜力的策略,通过MG掺杂量约为10%至0.54 V。密度功能理论(DFT)计算将这种电压降低归因于li离子的位置能量增加,因为Mg掺杂,对LI迁移障碍的影响很小。mg-掺杂的LVO在1000个周期以上的95%以上,速率为5C。全细胞具有0.8 CO 0.8 CO 0.1 Mn 0.1 Mn 0.1 O 2阴极的预期,预期的能量密度和能量密度的增加,同时保留了5C的250个周期的能力的91%,以表明我们的发现在5C中显示出良好的良好的良好态度,该良好的良好的良好态度的良好的良好态度是良好的途径。增强的能量密度。l
组织者: 刘继明教授 香港浸会大学计算机科学系讲座教授、协理副校长(研究及发展) jiming@comp.hkbu.edu.hk Maria Fasli 教授 科学与健康学院执行院长 计算机科学与电子工程学院 联合国教科文组织分析与数据科学教席 英国埃塞克斯大学 mfasli@essex.ac.uk 刘洋博士 香港浸会大学计算机科学系助理教授 csygliu@comp.hkbu.edu.hk 征文启事: 在这个信息以毫秒为单位传遍全球的时代,信息和通信技术 (ICT) 已经重塑了人类生活的方方面面。传统的界限——物理、地理、文化——正在消失,从而产生了新的社会互动和参与方式。这种高度互联的现实将个人转变为信息的消费者和生产者,催生了新的行为和模式,其影响仍有待揭示。由此产生的前景是巨大的机遇与复杂的挑战交织在一起。在信息通信技术中,人工智能由于数据的激增和计算能力的提高,在过去几年中取得了前所未有的发展。
9。W。Wang,A。Hejasebazzi,J。Zheng和K. J. Liu,“建立一个更好的引导程序,RAWR将击败您家门的随机途径:重新审视的系统发育支持估计”,第24届分子生物学智能系统会议的过程(ISMB)智能系统(ISMB)和欧洲20号会议(ISMB)会议(ISMB)和计算中的第202个会议(ECB)会议论文发表于《生物信息学》,第1卷。37,问题补充1,第1页。 I111 – I119,2021,doi:10.1093/bioinformatics/btab263。接受率为18.6%。
肺动脉高压(pH)是一种进行性,极端恶性和高病态性肺血管疾病[1]。它的主要特征是肺血管耐药性(PVR)增加和肺部血管压力的持续增加,最终导致右心力衰竭甚至猝死[2]。pH可以定义为由各种原因(包括毛细血管前,毛细血管后和混合原因)引起的肺动脉压(PAP)升高[3]。pH的诊断标准为平均PAP(MPAP)≥25mmHg在REST时通过右心导管在海平面测量[3]。肺动脉高压(PAH),由左心脏病引起的pH,由呼吸道疾病和/或缺氧引起的pH值,由阻塞性肺动脉疾病引起的pH值以及由未知因子引起的pH值构成当前pH的临床分类[4]。