目前,基于时期的晚期氧化过程由于其在去除水性培养基的某些持续污染物(染料,氯和氮和氮的有机化合物29-33)方面引起了很多关注。与传统的氧化剂(例如过氧化氢和硫酸盐)相比,Pe-ryodates具有热稳定性,对于存储和运输32。氧化的主要缺点是其高选择性。这降低了含有不同类别的有机量的废水处理的效率。时期主要用于氧化具有阴影基(–OH,–CHO,= CO或–COOH)的化合物,以醛或酮的结构34。激活时期以降低周期氧化的选择性。区分了以下周期激活方法:通过紫外线辐射(光解)35-37,光催化激活38、39,热激活40、41,在美国领域的激活(SON解析)42、43,Microwaves 44,由Microwaves 44,由Microwaves 44,由氢Perogy Perox-indience及其构造29–3-31,通过Transe-29-3-3-3-3-3-3-19-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3 ,通过金属纳米颗粒48-50,碳基材料51,52。
本文由DigitalCommons@umc的特殊收藏品带给您免费和开放访问。已被DigitalCommons@umc的授权管理员纳入MD论文。有关更多信息,请联系DigitalCommons@unmc.edu。
凝固酶阴性葡萄球菌是人类菌群中具有共识的机会性病原体。这些细菌感染发病机理中已知的最重要的毒力因子之一是生物膜的形成。微量滴定板法和刚果红琼脂技术被广泛用于揭示生物膜的形成。本研究旨在比较人凝岛酶阴性葡萄球菌属。细菌分离株,具有微量盘法方法和刚果红琼脂技术的生物膜形成。在研究中得出结论,在41个人类凝结酶阴性葡萄球菌分离株中,有35个未根据微滴定板法形成生物膜,6种分离株形成弱生物膜,并且均未在刚果红琼脂表面形成生物膜。已经得出结论,微滴定板法的结果更可靠,因为根据观察,刚果红琼脂技术对结果的解释是困难而主观的。由于文献中很少有研究比较凝血酶阴性葡萄球菌与微量尺板法和刚果红琼脂技术的生物膜形成,因此这项研究将是初步研究之一,并将为文献做出贡献。关键字:生物膜,凝聚酶阴性葡萄球菌,刚果红琼脂技术,微量滴定板法,阴道
摘要:对淡水虾消化道中降解胞外酶的需氧菌进行了分离。在羧甲基纤维素琼脂平板、淀粉琼脂培养基平板、明胶蛋白胨琼脂培养基平板上分离肠道细菌。在选择性培养基上根据胞外酶对分离的菌株进行定性筛选。根据形态学、生理学和生化特征对菌株进行鉴定,鉴定出芽孢杆菌种。通过使用明胶琼脂培养基、羧甲基纤维素培养基和刚果红CMC培养基以及针对不同酶的淀粉琼脂培养基进行菌落鉴定,分离出芽孢杆菌种。分离物能够水解蛋白质和碳水化合物,表明它们在鱼类营养中的重要性。
摘要:在这项研究中,针对AydınProvince在露天市场摊位上出售的各种食品形成生物膜的细菌的隔离和鉴定是针对的。细菌,并在37°C的胰蛋白酶大豆琼脂培养基中孵育24-48小时。进行了分离的细菌的DNA分离,并将获得的PCR产物用于测序。刚果红琼脂方法用于定性分析生物膜形成。根据这种方法,将形成黑色菌落的细菌评估为生物膜阳性,并使用微板法进行定量分析。从采样食品中分离出67种细菌,其中7种是强的,其中2种是中等生物膜生产者,表明应更重要的是食物卫生。
在这项研究中,Fe 3 O 4 /GO纳米复合材料是通过水热方法合成的,并测试了其从水中去除亚甲基蓝(MB)和刚果红(CR)的效率。使用傅立叶转换红外光谱(FTIR),X射线衍射(XRD)和扫描电子显微镜(SEM)表征合成的纳米复合材料。确定MB和CR去除的最佳值为pH 6.0,吸附量为50.0 mg,接触时间为10分钟。使用Freundlich模型分析了污染物在纳米复合材料上的吸附等温线,表明在吸附剂表面上有源位点的异质分布。MB和CR的最高吸附能力分别为135.1和285.7 mg.g -1。此外,Fe 3 O 4 /GO纳米复合材料可回收五个循环,具有适当的吸附能力。总体而言,Fe 3 O 4 /GO纳米复合材料对有效且可持续的水处理有很大的希望,在全球范围内提供安全和清洁的水。
油棕榈叶是修剪过程的副产品,在与硝酸镁的反应下,在900°C的钙化温度下成功用作二氧化硅的前体。基于使用XRD的产品表征并得到FTIR的支持,该技术以粉末形式产生MGO,MGSIO₃和MG₂SIO₄衍生物。刚果红的吸附过程中使用的准备粉末,这是一种对环境有毒的染料物质。所制备的材料能够在120分钟的理想平衡时间内吸附刚果红色,平均最终浓度为10.21 mg/l。吸附动力学遵循伪二阶。吸附过程遵循Temkin等温线模型,线性回归值接近1。这种吸附的结果表明,衍生产品具有吸附染料废物的潜力,这对水中的生命具有很大的影响。此外,在新材料作为吸附剂的开发中,迫切需要使用油棕叶的潜力,同时减少自然界的废物。
采用一锅法,在水溶液中使用两亲性嵌段共聚物合成氧化镍 (NiO) 纳米花。Pluronics F-127 嵌段共聚物在 NiO 纳米花的形成过程中起结构导向剂的作用。沉淀剂的受控水解缓慢释放出氨,氨可形成 Ni(OH) 2,后者在聚合物溶液中稳定下来。煅烧去除了纳米复合材料的聚合物部分,并将 Ni(OH) 2 转化为具有面心立方 (FCC) 相的 NiO。合成的 NiO 纳米花具有介孔结构,平均表面积为 154 m 2 /g。带负电荷的刚果红 (CR) 和带正电荷的 NiO 纳米花之间的物理吸附和静电相互作用使得 CR 染料能够在环境条件下吸附。染料的吸附遵循拟二级动力学,吸附剂通过煅烧再生,并以相似的效率循环三次。由 Elsevier BV 出版
这项研究采用简单的热液(HT)方法来合成五氧化钒(V 2 O 5)纳米材料。V 2 O 5的固有局限性,包括低量子效率和光敏度不足,限制了其增强光催化活性的潜力。该研究研究了通过退火通过退火研究甲基橙(MO)和刚果红(CR)染料的光降解。X射线衍射(XRD)和拉曼光谱学证实了V 2 O 5的组成,而SEM用于观察封装的纳米颗粒的形态。使用紫外线(UV)光谱法估计V 2 O 5的带隙在2.51和2.73 eV之间。此外,分析了亚甲基蓝(MB)染料的光降解,钙化的V2O5在90分钟内实现了MB的76%降解效率。对于CR和MO,在20 mg/L染料浓度下,降解率在200分钟内达到97.91%和86%。MB降解的反应速率常数确定为8.19 x10⁻⁵s⁻。总体而言,HT合成的V 2 O 5由于其可见光吸光度提高而表现出增强的光催化活性,从而促进了偶氮染料的更有效的光降解。
曲霉的绿曲霉和绿色链霉菌的纤维素分离,从尼日利亚尼日利亚大学的废物储层土壤中分离出来1 *,Fadayomi M.和Rikiji U.S. 1美国生物学系,微生物学和生物技术系,尼日利亚尼日利亚尼罗河大学,尼日利亚,尼日利亚。*通讯作者的电子邮件地址:gloria.ezeagu@nileuniversity.edu.ng电话:+2348060322809摘要使用微生物作为工业经济酶的生物学来源的潜力刺激了在几种微型机器人中的细胞外酶活性的利用中的利益。这项研究的目的是使用纤维素刚果红琼脂培养基评估两种微生物,曲霉和链霉菌的纤维素降解潜力。从废物垃圾场收集的土壤样品被连续稀释,并在淀粉酪蛋白琼脂和SDA中接种,分别分离出颗粒状的葡萄链链球菌和A. oryzae。为了评估其利用纤维素的潜力,在纤维素刚果介质上接种了两种微生物中的每一种,并在30ºC下孵育7天。孵育后围绕菌落周围的清除区域证实了细胞外纤维素酶的分泌,并用作纤维素利用的指征。用仪表规则测量清理区域。在获得的结果中,两种微生物均表现出具有曲霉曲霉的纤维素利用能力,显示清除30.50±0.50 mm的区域,而链霉菌则显示清除60.00±1.00 mm的清除区。它不溶于水,并作为晶体存在。结果表明,这两种微生物都可以是酶纤维素酶的有效生产者,而链霉菌晶状体具有较高的产生纤维素酶的能力。关键词:纤维素,刚果红,废物降低,链霉菌核桃介绍研究纤维素的背景是植物细胞壁的主要成分,是陆地生态系统中最丰富的有机化合物的主要成分(Book等,2016)。其降解是一个关键过程,尤其是在土壤生态系统中,在养分循环和有机物分解中起着至关重要的作用(Datta,2024年)。化学(或热化学)和生化过程的组合用于在工业范围内降解这种多糖生物量,但是由于酸或碱基腐蚀引起的问题,高温,中和解决方案的脱水量以及对反应的难度,这些过程需要特殊设备,因此需要特殊设备,因此存在许多问题。与化学或热化学过程相比,该过程的生化方面是一种更环保和温和的方法,但没有产生足够的产量(Sato等,2020),因此需要微生物活动。此外,关于从生物质(尤其是纤维素材料)而不是化石燃料的各种燃料和化学物质的生产中,纤维素被认为是生产生物燃料和可再生原料化学品的最合适的原料,